Chứng minh rằng với tứ giác ABCD bất kì, ta luôn có

Giải sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ

Bài 2 trang 94 SBT Toán 10 Tập 1: Chứng minh rằng với tứ giác ABCD bất kì, ta luôn có:

a) AB+BC+CD+DA=0.

b) ABAD=CBCD.

Quảng cáo

Lời giải:

a) Theo quy tắc ba điểm cộng vectơ ta có:

AB + BC = ACCD + DA = CA

Như vậy: AB+BC+CD+DA = AC + CA = 0.

b) Ta có:

ABAD = AB + DA = DB.

CBCD = CB + DC = DB.

Vậy ABAD=CBCD.

Quảng cáo


Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Săn SALE shopee tháng 9:

ĐỀ THI, GIÁO ÁN, GIA SƯ DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Chân trời sáng tạo khác