Cho hai mặt phẳng (P1): x + 2y – 3z + 5 = 0 và (P2): −4x – 8y + 12z + 3 = 0

Giải SBT Toán 12 Cánh diều Bài 1: Phương trình mặt phẳng

Bài 16 trang 48 SBT Toán 12 Tập 2: Cho hai mặt phẳng (P1): x + 2y – 3z + 5 = 0 và (P2): −4x – 8y + 12z + 3 = 0.

Quảng cáo

a) Chứng minh rằng (P1) // (P2).

b) Tính khoảng cách giữa hai mặt phẳng (P1), (P2).

Lời giải:

a) Gọi nP1, nP2 lần lượt là hai vectơ pháp tuyến của (P1), (P2).

Ta có nP1 = (1; 2; −3), nP2 = (−4; −8; 12) = −4(1; 2; −3) nên nP2 = −4nP1 và 3 ≠ – 4 . 5.

Do đó, (P1) // (P2).

b) Chọn M(0; −1; 1) ∈ (P1). Vì (P1) // (P2) nên ta có:

d((P­1), (P2)) = d(M, (P2)) = 4.08.(1)+12.1+3(4)2+(8)2+122 = 231456.

Vậy khoảng cách giữa hai mặt phẳng (P1), (P2) là 231456.

Quảng cáo

Lời giải SBT Toán 12 Bài 1: Phương trình mặt phẳng hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Cánh diều khác
Tài liệu giáo viên