Cho đường thẳng ∆ có phương trình tham số x=at, y=bt, x=ct với a^2+b^2+c^2 lớn hơn 0

Giải SBT Toán 12 Cánh diều Bài 2: Phương trình đường thẳng

Bài 29 trang 58 SBT Toán 12 Tập 2: Cho đường thẳng ∆ có phương trình tham số x=aty=btz=ct với a2 + b2 + c2 > 0. Sin của góc giữa đường thẳng ∆ và mặt phẳng (Oyz) bằng:

Quảng cáo

A. |a+b+c|a2+b2+c2.

B. |a|a2+b2+c2.

C. |b|a2+b2+c2.

D. |c|a2+b2+c2.

Lời giải:

Đáp án đúng là: B

Ta có: uΔ = (a; b; c) là vectơ chỉ phương của đường thẳng ∆, i = (1; 0; 0) là vectơ pháp tuyến của mặt phẳng (Oyz).

Ta có: sin(∆, (Oyz)) = |1.a+0.b+0.c|a2+b2+c2.12+0+0=|a|a2+b2+c2.

Quảng cáo

Lời giải SBT Toán 12 Bài 2: Phương trình đường thẳng hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Cánh diều khác
Tài liệu giáo viên