Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau trang 25 SBT Toán 12 Tập 1
Giải sách bài tập Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số - Kết nối tri thức
Bài 1.33 trang 25 SBT Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a)
b)
Lời giải:
a)
1. Tập xác định: D = ℝ\{2}.
2. Sự biến thiên
Ta có: y = x – 2 + .
Giới hạn tại vô cực:
.
Do đó, đồ thị hàm số không có tiệm cận ngang.
; .
Do đó, đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
Do đó, đường thẳng y = x – 2 là đường tiệm cận xiên của đồ thị hàm số.
Ta có: y' =
y' = 0 ⇔ = 0 ⇔ x = 0 hoặc x = 4.
Hàm số đồng biến trên các khoảng (−∞; 0) và (4; +∞).
Hàm số nghịch biến trên các khoảng (0; 2) và (2; 4).
Hàm số đạt cực đại tại x = 0 và yCĐ = −4.
Hàm số đạt cực tiểu tại x = 4 và yCT = 4.
3. Đồ thị hàm số
Đồ thị hàm số cắt trục tung tại điểm (0; −4).
Đồ thị hàm số không cắt trục hoành.
Tâm đối xứng của đồ thị hàm số là điểm (2; 0).
Hai trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.
Đồ thị hàm số như sau:
b)
1. Tập xác định: D = ℝ\{−1}.
2. Sự biến thiên
Ta có: y = 2x + 1 − .
Giới hạn tại vô cực:
.
Do đó, đồ thị hàm số không có tiệm cận ngang.
; .
Do đó, đường thẳng x = −1 là tiệm cận đứng của đồ thị hàm số.
Do đó, đường thẳng y = 2x + 1 là đường tiệm cận xiên của đồ thị hàm số.
Ta có: y' = = > 0, với mọi x ≠ −1.
Bảng biến thiên của hàm số như sau:
Hàm số đồng biến trên các khoảng (−∞; −1) và (−1; +∞).
Hàm số không có cực trị.
3. Đồ thị hàm số
Đồ thị hàm số cắt trục tung tại điểm (0; −5).
Đồ thị hàm số cách trục hoành tại điểm và (1; 0).
Đồ thị hàm số có tâm đối xứng là điểm (−1; −1).
Hai trục đối xứng của đồ thị là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.
Đồ thị hàm số như sau:
Lời giải Sách bài tập Toán lớp 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số hay khác:
Bài 1.31 trang 25 SBT Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: ....
Bài 1.32 trang 25 SBT Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: ....
Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT