Giải SBT Toán 7 trang 63 Tập 2 Chân trời sáng tạo

Với Giải SBT Toán 7 trang 63 Tập 2 trong Bài 8: Tính chất ba đường cao của tam giác Sách bài tập Toán lớp 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 63.

Giải SBT Toán 7 trang 63 Tập 2 Chân trời sáng tạo

Bài 1 trang 63 sách bài tập Toán lớp 7 Tập 2: Trong Hình 7. Hãy chứng minh AC, EK và BD cùng đi qua một điểm.

Trong Hình 7 Hãy chứng minh AC, EK và BD cùng đi qua một điểm

Quảng cáo

Lời giải:

Trong Hình 7 Hãy chứng minh AC, EK và BD cùng đi qua một điểm

Gọi M là giao điểm của AC và BD.

Xét tam giác MAB có E là giao điểm của hai đường cao AD và BC nên E là trực tâm của tam giác MAB.

Khi đó ME là đường cao kẻ từ đỉnh M của tam giác AMB, tức là ME ⊥ AB.

Mà EK ⊥ AB.

Do đó EK đi qua điểm M.

Vậy AC, EK và BD cùng đi qua điểm M.

Bài 2 trang 63 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A, vẽ đường trung tuyến AM. Qua A vẽ đường thẳng d vuông góc với AM. Chứng minh d // BC.

Quảng cáo

Lời giải:

Cho tam giác ABC cân tại A, vẽ đường trung tuyến AM

Vì tam giác ABC cân tại A (giả thiết) nên AB = AC.

Vì AM là trung tuyến của tam giác ABC nên BM = CM.

Xét ΔAMB và ΔAMC có:

Cạnh AM là cạnh chung,

AB = AC (chứng minh trên),

BM = CM (chứng minh trên).

Do đó ΔAMB = ΔAMC (c.c.c).

Suy ra AMB^=AMC^ (hai góc tương ứng).

Lại có AMB^+AMC^=180° (hai góc kề bù).

Nên AMB^=AMC^=180°2=90°.

Hay AM ⊥BC.

Mà d ⊥ AM (giả thiết).

Suy ra d // BC (dấu hiệu nhận biết hai đường thẳng song song).

Vậy d // BC.

Bài 3 trang 63 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Vẽ hai đường cao AE và AF của hai tam giác ABC và ACD. Chứng minh góc EAF vuông.

Quảng cáo

Lời giải:

Cho tam giác ABC cân tại A Vẽ điểm D sao cho A là trung điểm của BD

Vì tam giác ABC cân tại A nên AB = AC.

Mà AB = AD (vì A là trung điểm của BD).

Suy ra AC = AD = AB.

Xét ΔAEB và ΔAEC có:

AEB^=AEC^=90°,

Cạnh AE là cạnh chung,

AB = AC (chứng minh trên).

Do đó ΔAEB = ΔAEC (cạnh huyền – cạnh góc vuông).

Suy ra BAE^=CAE^ (hai góc tương ứng).

Xét ΔACF và ΔADF có:

AFC^=AFD^=90°,

Cạnh AF là cạnh chung,

AC = AD (chứng minh trên).

Do đó ΔAFC = ΔAFD (cạnh huyền – cạnh góc vuông).

Suy ra FAC^=FAD^ (hai góc tương ứng).

Ta có BAE^+CAE^+FAC^+FAD^=180°

BAE^=CAE^, FAC^=FAD^(chứng minh trên).

Suy ra 2EAC^+2FAC^=180°

Hay 2EAC^+FAC^=180°:2=90°

Do đó EAF^=90°.

Vậy góc EAF vuông.

Bài 4 trang 63 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có A^=65°,B^=54°. Vẽ trực tâm H của tam giác ABC. Tính góc AHB.

Quảng cáo

Lời giải:

Cho tam giác ABC có góc A = 65 độ, góc B = 54 độ

Trong tam giác vuông ABE ta có: EAB^+EBA^=90° (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).

EBA^=54° nên EAB^=90°EBA^=90°54°=36°.

Trong tam giác vuông BAF ta có: FAB^+FBA^=90° (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).

FAB^=65° nên FBA^=90°FAB^=90°65°=25°.

Trong ∆AHB ta có: HAB^+HBA^+AHB^=180° (tổng ba góc trong một tam giác).

Suy ra

AHB^=180°HAB^HBA^=180°36°25°=119°.

Vậy AHB^=119°.

Bài 5 trang 63 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A có góc A nhọn và H là trực tâm. Cho biết BHC^=150°. Tìm các góc của tam giác ABC.

Lời giải:

Vẽ hai đường cao BE và CF của tam giác ABC.

Cho tam giác ABC cân tại A có góc A nhọn và H là trực tâm

Trong ∆BHC có: HCB^+HBC^+CHB^=180° (tổng ba góc trong một tam giác).

Suy ra

HBC^+HCB^=180BHC^=180°150°=30°

Trong ∆CBE vuông tại E có: ECB^+EBC^=90° (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).

Nên ECB^=90°EBC^ (1)

Trong ∆CBF vuông tại F có: FCB^+FBC^=90° (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).

Nên FBC^=90°FCB^ (2)

Từ (1) và (2) ta có:

FBC^+ECB^=180°EBC^+FCB^

=180°HBC^+HCB^=180°30°=150°.

Hay ABC^+ACB^=150°

Do tam giác ABC cân tại A nên ta có:

ABC^=ACB^=150°2=75°.

Trong ∆ABC có: ACB^+ABC^+CAB^=180° (tổng ba góc trong một tam giác).

Suy ra

A^=180°ACB^ABC^=180°75°75°=30°.

Vậy ABC^=ACB^=75°, A^=30°.

Xem thêm lời giải Sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Chân trời sáng tạo (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Chân trời sáng tạo khác
Tài liệu giáo viên