Cho tam giác ABC cân tại A AH là đường cao. Gọi M N lần lượt là trung điểm của AB, AC

Giải sách bài tập Toán 8 Bài 13: Hình chữ nhật - Kết nối tri thức

Bài 3.20 trang 39 sách bài tập Toán 8 Tập 1: Cho tam giác ABC cân tại A, AH là đường cao. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi D, E lần lượt là điểm sao cho M là trung điểm của HD, N là trung điểm của HE.

a) Chứng minh AHBD, AHCE, BCED là những hình chữ nhật.

b) Tại sao giao điểm của BE và CD là trung điểm của AH?

c) Giải thích tại sao DH = HE, BE = CD.

Quảng cáo

Lời giải:

Cho tam giác ABC cân tại A AH là đường cao. Gọi M N lần lượt là trung điểm của AB, AC

a) • Tứ giác AHBD có M là trung điểm của AB và HD nên là hình bình hành.

Do AH là đường cao của ∆ABC nên AH ⊥ BC, suy ra AHB^=90°

Hình bình hành AHBD có AHB^=90° nên AHBD là hình chữ nhật.

• Tương tự, tứ giác AHCE có N là trung điểm của AC và HE nên là hình bình hành.

Lại có AHC^=90° nên AHCE là hình chữ nhật.

• Do AHBD, AHCE là các hình chữ nhật (chứng minh trên)

Suy ra ADB^=DBH^=HCE^=AEC^=90°

Tứ giác BCED có ADB^=DBH^=HCE^=AEC^=90° là các góc ở đỉnh nên BCED là hình chữ nhật.

b) Vì ADBH, AECH là các hình chữ nhật nên AD = BH, AE = HC, AD // BC, AE // BC

Mà ∆ABC cân tại A có AH là đường cao nên đồng thời là đường trung tuyến, do đó H là trung điểm của BC, suy ra BH = HC.

Từ đó, AD = BH = HC = AE

Tứ giác ADHC có: AD // HC, AD = HC nên ADHC là hình bình hành.

Tứ giác ABHE có: AE // BH, AE = BH nên ABHE là hình bình hành

Vì ADHC là hình bình hành nên CD cắt AH tại trung điểm của AH.

Vì AEHB là hình bình hành nên BE cắt AH tại trung điểm của AH.

Vậy giao điểm của BE và CD là trung điểm của AH.

c) Do AHBD, AHCE là các hình chữ nhật nên AB = DH, AC = HE (hai đường chéo bằng nhau).

Mà AB = AC (do ∆ABC cân tại A) nên DH = HE.

Do BCED là hình chữ nhật (chứng minh câu a) nên CD = BE (hai đường chéo bằng nhau).

Quảng cáo

Lời giải SBT Toán 8 Bài 13: Hình chữ nhật hay khác:

Quảng cáo

Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:

Săn SALE shopee tháng này:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 8 Tập 1 & Tập 2 hay, chi tiết của chúng tôi được biên soạn bám sát Sách bài tập Toán 8 Kết nối tri thức (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 Kết nối tri thức khác
Tài liệu giáo viên