Cho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh Các tứ giác AKIB, BLKC là các tứ giác nội tiếp

Giải SBT Toán 9 Bài tập cuối chương 8 - Cánh diều

Bài 29 trang 93 SBT Toán 9 Tập 2: Cho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh:

a) Các tứ giác AKIB, BLKC là các tứ giác nội tiếp;

b) Trực tâm H của tam giác ABC là tâm đường tròn nội tiếp tam giác IKL.

Quảng cáo

Lời giải:

Cho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh Các tứ giác AKIB, BLKC là các tứ giác nội tiếp

a) Xét ∆ABC có ba đường cao AI, BK, CL nên AI ⊥ BC, BK ⊥ AC, CL ⊥ AB.

Do ∆ABK vuông tại K và ∆ABI vuông tại I nên hai điểm K, I cùng thuộc đường tròn đường kính AB. Do đó tứ giác AKIB nội tiếp đường tròn đường kính AB.

Do ∆BCL vuông tại L và ∆BCK vuông tại K nên hai điểm L, K cùng thuộc đường tròn đường kính BC. Do đó tứ giác BLKC nội tiếp đường tròn đường kính BC.

b) Do tứ giác AKIB nội tiếp đường tròn nên tổng hai góc đối nhau của tứ giác này bằng 180°, suy ra ABI^+AKI^=180°

Mà CKI^+AKI^=180° (hai góc kề bù)

Nên CKI^=ABI^   =180°AKI^ hay IKC^=ABC^.

Tương tự ta cũng có AKL^=ABC^.

Suy ra AKL^=IKC^.

Từ đó ta có 90°AKL^=90°IKC^ hay LKH^=IKH^.

Vì vậy KH là đường phân giác của góc LKI.

Tương tự cũng có LH là đường phân giác của góc KLI.

Vậy H là tâm đường tròn nội tiếp tam giác IKL.

Quảng cáo

Lời giải SBT Toán 9 Bài tập cuối chương 8 hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Cánh diều của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Cánh diều khác
Tài liệu giáo viên