Cho lục giác đều ABCDEF cạnh bằng a. Chứng minh sáu điểm A, B, C, D, E, F cùng thuộc một đường tròn

Giải SBT Toán 9 Bài tập cuối chương 8 - Cánh diều

Bài 31 trang 93 SBT Toán 9 Tập 2: Cho lục giác đều ABCDEF cạnh bằng a.

a) Chứng minh sáu điểm A, B, C, D, E, F cùng thuộc một đường tròn. Tính theo a bán kính của đường tròn đó.

b) Chứng minh các tam giác ACE, BFD là các tam giác đều. Tính theo a bán kính đường tròn nội tiếp tương ứng của các tam giác đó.

Quảng cáo

Lời giải:

Cho lục giác đều ABCDEF cạnh bằng a. Chứng minh sáu điểm A, B, C, D, E, F cùng thuộc một đường tròn

a) ⦁ Vì ABCDEF là lục giác đều nên ba đường chéo chính AD, BE, CF bằng nhau và cắt nhau tại trung điểm O của mỗi đường, do đó OA = OB = OC = OD = OE = OF, nên sáu điểm A, B, C, D, E, F cùng thuộc đường tròn đường kính AD.

⦁ Vì ABCDEF là lục giác đều nên độ dài đường chéo chính AD gấp 2 lần độ dài cạnh, mà AD là đường kính của đường tròn đi qua sáu điểm A, B, C, D, E, F nên bán kính của đường tròn đi qua sáu điểm A, B, C, D, E, F bằng độ dài cạnh của lục giác đều và bằng a.

b) ⦁ Vì ABCDEF là lục giác đều nên các góc ở các đỉnh của lục giác đều bằng nhau, suy ra ABC^=BCD^=CDE^=DEF^=EAF^=AFB^.

Vì ABCDEF là lục giác đều nên các cạnh bằng nhau, suy ra AB = BC = CD = DE = EF = FA.

Xét ∆ABC và ∆CDE có:

AB = CD, ABC^=CDE^, BC = DE.

Do đó ∆ABC = ∆CDE (c.g.c)

Suy ra AC = CE (hai cạnh tương ứng).

Chứng minh tương tự, ta có kết quả AC = CE = AE = BD = DF = BF.

Do AC = CE = AE nên ∆ACE là tam giác đều.

Do BF = BD = DF nên ∆BFD là tam giác đều.

⦁ Gọi H là giao điểm của AC và OB.

Ta có OA = OB = AB = a nên ∆OAB là tam giác đều, do đó ABO^=60° hay ABH^=60°.

Xét tứ giác OABC có OA = OC = AB = BC nên OABC là hình thoi, do đó hai đường chéo AC và OB vuông góc với nhau tại trung điểm H của mỗi đường.

Từ đó ta có AC = 2AH.

Xét ∆ABH vuông tại H, ta có:

AH=ABsinABH^=asin60°=a32.

Suy ra AC=2AH=2a32=a3.

Vì ∆ACE là tam giác đều nên bán kính đường tròn nội tiếp của ∆ACE là AC36=a336=a2.

Vì AC = CE = AE = BF = FD = BD nên ta có ∆ACE = ∆BFD (c.c.c).

Do đó bán kính đường tròn nội tiếp tương ứng của ∆ACE và ∆BFD bằng nhau, và bằng a2.

Quảng cáo

Lời giải SBT Toán 9 Bài tập cuối chương 8 hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Cánh diều của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Cánh diều khác
Tài liệu giáo viên