Giải Tin học 11 trang 91 Kết nối tri thức

Với Giải Tin học 11 trang 91 trong Bài 19: Bài toán tìm kiếm Tin học lớp 11 Kết nối tri thức hay nhất, ngắn gọn sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Tin 11 trang 91.

Giải Tin học 11 trang 91 Kết nối tri thức

Quảng cáo

Câu hỏi 1 trang 91 Tin học 11: Cho dãy A = [1, 91, 45, 23, 67, 9, 10, 47, 90, 46, 86]. Thuật toán tìm kiếm tuần tự cần thực hiện bao nhiêu lần duyệt để tìm ra phần tử có giá trị bằng 47 trong dãy?

Lời giải:

Trong trường hợp này, chúng ta cần tìm phần tử có giá trị là 47 trong dãy A = [1, 91, 45, 23, 67, 9, 10, 47, 90, 46, 86]. Ta sẽ thực hiện duyệt từng phần tử trong dãy này để tìm kiếm phần tử có giá trị là 47.

Dãy A có tổng cộng 11 phần tử, và trong trường hợp xấu nhất, phần tử cần tìm là phần tử cuối cùng của dãy. Vì vậy, trong trường hợp xấu nhất, ta cần duyệt qua toàn bộ dãy A để tìm thấy phần tử có giá trị là 47.

Vậy, số lần duyệt cần thực hiện là 7 lần.

Quảng cáo

Câu hỏi 2 trang 91 Tin học 11: Khi nào thì tìm kiếm tuần tự sẽ tìm được ngay kết quả, cần ít bước nhất?

Lời giải:

Trong trường hợp tốt nhất, thuật toán tìm kiếm tuần tự sẽ tìm được ngay kết quả (phần tử cần tìm) sau khi duyệt qua ít bước nhất có thể. Điều này xảy ra khi phần tử cần tìm nằm ở vị trí đầu tiên của dãy.

Câu hỏi 3 trang 91 Tin học 11: Khi nào thì tìm kiếm tuần tự sẽ cần nhiều bước nhất? Cho ví dụ.

Lời giải:

Thuật toán tìm kiếm tuần tự sẽ cần nhiều bước nhất khi phải duyệt qua toàn bộ dãy số để tìm kiếm phần tử cần tìm, tức là phần tử đó nằm ở cuối dãy hoặc không có trong dãy. Đây là trường hợp xấu nhất của thuật toán tìm kiếm tuần tự.

Quảng cáo

Ví dụ: Giả sử chúng ta cần tìm phần tử có giá trị là 100 trong dãy A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Phần tử này không có trong dãy, và thuật toán tìm kiếm tuần tự sẽ phải duyệt qua toàn bộ dãy 10 phần tử để xác nhận rằng phần tử này không có trong dãy.

Vậy, trong trường hợp xấu nhất, số lần duyệt cần thực hiện là đúng bằng số phần tử trong dãy. Trong ví dụ trên, số lần duyệt cần thực hiện là 10 lần để tìm kiếm phần tử không có trong dãy.

Hoạt động 3 trang 91 Tin học 11: Cho trước một đây số đã được sắp xếp theo thứ tự tăng dần. Hãy đọc, quan sát và thảo luận cách làm sau đây để hiểu được thuật toán tìm kiếm nhị phân, biết được tính ưu việt của thuật toán này so với thuật toán tìm kiếm tuần tự trên một dây các phần từ đã sắp xếp.

Quảng cáo

Lời giải:

Thụât toán tìm kiếm nhị phân thực hiện tìm kiếm một mảng đã sắp xếp bằng cách liên tục chia các khoảng tìm kiếm thành 1 nửa. Bắt đầu với một khoảng từ phần tử đầu mảng, tới cuối mảng. Nếu giá trị của phần tử cần tìm nhỏ hơn giá trị của phần từ nằm ở giữa khoảng thì thu hẹp phạm vi tìm kiếm từ đầu mảng tới giửa mảng và nguợc lại. Cứ thế tiếp tục chia phạm vi thành các nửa cho dến khi tìm thấy hoặc đã duyệt hết.

Thuật toán tìm kiếm nhị phân tỏ ra tối ưu hơn so với tìm kiếm tuyết tính ở các mảng có độ dài lớn và đã được sắp xếp. Ngược lại, tìm kiếm tuyến tính sẽ tỏ ra hiệu quả hơn khi triển khai trên các mảng nhỏ và chưa được sắp xếp.

Lời giải bài tập Tin học 11 Bài 19: Bài toán tìm kiếm hay khác:

Xem thêm lời giải bài tập Tin học lớp 11 Kết nối tri thức hay nhất, ngắn gọn khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Kết nối tri thức khác
Tài liệu giáo viên