Giải Toán 10 trang 67 Tập 1 Cánh diều

Với Giải Toán 10 trang 67 Tập 1 trong Bài 1: Giá trị lượng giác của một góc từ 00 đến 1800. Định lý côsin và định lý sin trong tam giác Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 67.

Giải Toán 10 trang 67 Tập 1 Cánh diều

Hoạt động 6 trang 67 Toán lớp 10 Tập 1: Cho tam giác ABC có BC = a, AC = b, AB = c, BAC^=α . Kẻ đường cao BH.

Cho α là góc nhọn, chứng minh: 

a) HC = |AC – AH| và BC2 = AB2 + AC2 – 2AH . AC; 

b) a2 = b2 + c2 – 2bc cos α. 

Lời giải:

Quảng cáo

a) Nếu góc C nhọn thì H nằm giữa A và C. 

Cho tam giác ABC có BC = a, AC = b, góc BAC = alpha . Kẻ đường cao BH

Do đó: HC = AC – AH = |AC – AH|. 

Nếu góc C tù thì C nằm giữa A và H. 

Cho tam giác ABC có BC = a, AC = b, góc BAC = alpha . Kẻ đường cao BH

Do đó: HC = AH – AC = |AC – AH|. 

Nếu góc C vuông thì C trùng với H. Do đó: HC = 0 = |AC – AH|.

Trong mọi trường hợp, ta đều có HC = |AC – AH|. 

Xét các tam giác vuông BHC và AHB, áp dụng định lí Pythagore, ta có: 

BC2 = BH2 + HC2 = BH2 + (AC – AH)2 = (BH2 + AH2) + AC2 – 2AH . AC 

        = AB2  + AC2 – 2AH . AC. 

b) Xét tam giác vuông AHB, ta có: AH = AB cosA = cosα. 

Do đó BC2 = AB2 + AC2 – 2 . AH . AC = b2 + c2 – 2bc cosα. 

Vậy a2 = b2 + c2 – 2bc cos α. 

Hoạt động 7 trang 67 Toán lớp 10 Tập 1: Cho tam giác ABC có BC = a, AC = b, AB = c, BAC^=α . Kẻ đường cao BH

Cho α là góc tù. Chứng minh:

a) HC = AC + AH và BC2 = AB2 + AC2 + 2 AH . AC; 

b) a2 = b2 + c2 – 2bc cos α. 

Lời giải:

Quảng cáo


Cho tam giác ABC có BC = a, AC = b, góc BAC = alpha

a) Do α là góc tù nên A nằm giữa H và C. Do đó: HC = AC + AH. 

Xét các tam giác vuông BHC và AHB, áp dụng định lí Pythagore, ta có: 

BC2 = BH2 + HC2 = BH2 + (AC + AH)2 

        = (BH2 + AH2) + AC2 + 2AH . AC 

        = AB2 + AC2 + 2AH . AC. 

b) Xét tam giác AHB vuông tại H, ta có: 

AH = AB cos(180° – α) = – c cos α. 

Do đó BC2 = AB2 + AC2 + 2AH . AC = b2 + c2 – 2bc cos α. 

Vậy a2 = b2 + c2 – 2bc cos α.

Lời giải bài tập Toán 10 Bài 1: Giá trị lượng giác của một góc từ 00 đến 1800. Định lý côsin và định lý sin trong tam giác hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Cánh diều khác
Tài liệu giáo viên