Giải Toán 10 trang 91 Tập 2 Cánh diều

Với Giải Toán 10 trang 91 Tập 2 trong Bài 5: Phương trình đường tròn Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 91.

Giải Toán 10 trang 91 Tập 2 Cánh diều

Bài 1 trang 91 Toán lớp 10 Tập 2: Phương trình nào sau đây là phương trình đường tròn?

a) x2 + y2 – 2x + 2y – 7 = 0;

b) x2 + y2 – 8x + 2y + 20 = 0.

Quảng cáo

Lời giải:

a) x2 + y2 – 2x + 2y – 7 = 0

⇔ (x2 – 2x + 1) + (y2 + 2y + 1) – 1 – 1 – 7 = 0

⇔ (x – 1)2 + (y + 1)2 = 9

Đây là phương trình đường tròn với tâm I(1; – 1) và bán kính R = 9 = 3.

b) x2 + y2 – 8x + 2y + 20 = 0

⇔ (x2 – 8x + 16) + (y2 + 2y + 1) – 16 – 1 + 20 = 0

⇔ (x – 4)2 + (y – 1)2 = – 3

Do – 3 < 0 nên đây không phải là phương trình đường tròn.

Bài 2 trang 91 Toán lớp 10 Tập 2: Tìm tâm và bán kính của đường tròn trong mỗi trường hợp sau:

a) Đường tròn có phương trình (x + 1)2 + (y – 5)2 = 9;

b) Đường tròn có phương trình x2 + y2 – 6x – 2y – 15 = 0.

Quảng cáo


Lời giải:

a) Ta có: (x + 1)2 + (y – 5)2 = 9 ⇔ (x – (– 1))2 + (y – 5)2 = 32.

Do đó, đường tròn đã cho có tâm I(– 1; 5) và bán kính R = 3.

b) Ta có: x2 + y2 – 6x – 2y – 15 = 0

⇔ (x2 – 6x + 9) + (y2 – 2y + 1) – 9 – 1 – 15 = 0

⇔ (x – 3)2 + (y – 1)2 = 25

Do đó, đường tròn đã cho có tâm I(3; 1) và bán kính R = 25=5.

Bài 3 trang 91 Toán lớp 10 Tập 2: Lập phương trình đường tròn trong mỗi trường hợp sau:

a) Đường tròn có tâm O(– 3; 4) và bán kính R = 9;

b) Đường tròn có tâm I(5; – 2) và đi qua điểm M(4; – 1);

c) Đường tròn có tâm I(1; – 1) và có một tiếp tuyến là Δ: 5x – 12y – 1 = 0;

d) Đường tròn đường kính AB với A(3; – 4) và B(– 1; 6);

e) Đường tròn đi qua ba điểm A(1; 1); B(3; 1); C(0; 4).

Quảng cáo

Lời giải:

a) Phương trình đường tròn có tâm O(– 3; 4) và bán kính R = 9 là

(x – (– 3))2 + (y – 4)2 = 92 hay (x + 3)2 + (y – 4)2 = 81.

b) Đường tròn có tâm I và đi qua điểm M thì có bán kính là

R = IM = 452+122=2.

Vậy phương trình đường tròn cần lập là (x – 5)2 + (y – (– 2))2 = 22 hay (x – 5)2 + ( y + 2)2 = 2.

c) Khoảng cách từ tâm I của đường tròn đến tiếp tuyến ∆ chính bằng bán kính của đường tròn.

Lập phương trình đường tròn trong mỗi trường hợp sau

Vậy phương trình đường tròn cần lập là x12+y12=16132 hay x12+y+12=256169.

d) Ta có: AB = 132+642=229.

Gọi I là trung điểm của AB, ta có tọa độ của I là xI=3+12=1, yI=4+62=1 hay I(1; 1).

Đường tròn đường kính AB có tâm là trung điểm I của AB và có bán kính R =AB2=29.

Vậy phương trình đường tròn đường kính AB là (x – 1)2 + (y – 1)2 = 29.

e) Giả sử tâm của đường tròn là điểm I(a; b).

Ta có IA = IB = IC ⇔ IA2 = IB2 = IC2.

Vì IA2 = IB2, IB2 = IC2 nên

Lập phương trình đường tròn trong mỗi trường hợp sau

Đường tròn tâm I(2; 3) bán kính R = IC = a2+4b2=22+432=5.

Phương trình đường tròn là x22+y32=52.

Vậy phương trình đường tròn là (x – 2)2 + (y – 3)2 = 5.

Lời giải bài tập Toán 10 Bài 5: Phương trình đường tròn hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Cánh diều khác
Tài liệu giáo viên