Giải Toán 10 trang 47 Tập 1 Chân trời sáng tạo
Với Giải Toán 10 trang 47 Tập 1 trong Bài 1: Hàm số và đồ thị Toán 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 47.
Giải Toán 10 trang 47 Tập 1 Chân trời sáng tạo
Thực hành 4 trang 47 Toán lớp 10 Tập 1:
a) Tìm khoảng đồng biến và nghịch biến của hàm số có đồ thị sau:
b) Xét tính đồng biến, nghịch biến của hàm số y = f(x) = 5x2 trên khoảng (2; 5).
Lời giải:
a) Tập xác định của hàm số là D = [-3; 7].
Quan sát trên đồ thị hàm số, ta thấy:
Trên khoảng (-3; 1) đồ thị của hàm số đi lên từ trái sang phải. Do đó hàm số đồng biến trên khoảng (-3; 1).
Trên khoảng (1; 3) đồ thị của hàm số đi xuống từ trái sang phải. Do đó hàm số nghịch biến trên khoảng (1; 3).
Trên khoảng (3; 7) đồ thị của hàm số đi lên từ trái sang phải. Do đó hàm số đồng biến trên khoảng (3; 7).
Vậy hàm số đồng biến trên khoảng (-3; 1) và (3; 7); nghịch biến trên khoảng (1; 3).
b) Hàm số y = f(x) = 5x2 xác định trên ℝ nên hàm số xác định trên khoảng (2; 5).
Lấy x1, x2 ∈ (2; 5) thỏa mãn x1 < x2, ta có:
f(x1) – f(x2) = 5x12 – 5x22 = 5(x12 – x22) = 5(x1 – x2)(x1 + x2) .
Vì x1, x2 ∈ (2; 5) nên x1 + x2 > 0 và vì x1 < x2 nên x1 – x2 < 0
Do đó 5(x1 – x2)(x1 + x2) < 0 suy ra f(x1) – f(x2) < 0 hay f(x1) < f(x2).
Vậy hàm số đã cho đồng biến trên khoảng (2; 5).
Bài 1 trang 47 Toán lớp 10 Tập 1: Tìm tập xác định của các hàm số sau:
a) f(x) = ;
b) f(x) = ;
Lời giải:
a)
Điều kiện xác định của hàm số này là:
Vậy là tập xác định của hàm số f(x) =
b) Hàm số f(x) = 2 + xác định khi xác định.
Điều kiện xác định của hàm số đã cho là: x + 3 ≠ 0 ⇔ x ≠ -3.
Vậy là tập xác định của hàm số f(x) =
Bài 2 trang 47 Toán lớp 10 Tập 1: Tìm tập xác định, tập giá trị của hàm số có đồ thị như Hình 10.
Lời giải:
Từ đồ thị trên, ta thấy hàm số xác định trên [-1; 9].
Do đó tập xác định của hàm số là D = [-1; 9].
Giá trị thấp nhất của y = f(x) là – 2 tương ứng với x = 5 và giá trị cao nhất của y = f(x) là 6 tương ứng với x = 9.
Do đó tập giá trị của hàm số là [-2; 6].
Bài 3 trang 47 Toán lớp 10 Tập 1: Tìm các khoảng đồng biến, nghịch biến của các hàm số sau:
a) f(x) = -5x + 2
b) f(x) =
Lời giải:
a)
Tập xác định D = ℝ
Lấy x1 , x2 là hai số thực tùy ý thỏa mãn x1 < x2, ta có:
f(x1) – f(x2) = (-5+ 2) – (-5+ 2) = -5x1 + 2 + 5x2 – 2 = -5x1 + 5x2 = 5(x2 – x1)
Vì x1 < x2 ⇒ 5(x2 – x1) > 0 ⇒ f(x1) – f(x2) > 0 hay f(x1) > f(x2).
Vậy hàm số nghịch biến (giảm) trên ℝ
b)
Tập xác định D = ℝ
Lấy x1 , x2 là hai số thực tùy ý thỏa mãn x1 < x2, ta có:
f(x1) – f(x2) = - x12 – (-x22) = x22 - x12 = (x2 – x1)(x2 + x1)
+) Với x1, x2 ∈ (-∞; 0) và x1 < x2, khi đó: x1 + x2 < 0 và x2 – x1 > 0
Do đó, f(x1) – f(x2) < 0 f(x1) < f(x2), nên hàm số f(x) đồng biến trên khoảng (-∞; 0).
+) Với x1, x2 ∈ (-∞; 0) và x1 < x2, khi đó: x1 + x2 > 0 và x2 – x1 > 0
Do đó, f(x1) – f(x2) > 0 f(x1) > f(x2) nên hàm số f(x) nghịch biến trên khoảng (0; +∞).
Vậy hàm số f(x) = -đồng biến trên khoảng (-∞; 0) và nghịch biến trên khoảng (0; +∞).
a)
Tập xác định D = ℝ
Lấy x1 , x2 là hai số thực tùy ý thỏa mãn x1 < x2, ta có:
f(x1) – f(x2) = (-5+ 2) – (-5+ 2) = -5x1 + 2 + 5x2 – 2 = -5x1 + 5x2 = 5(x2 – x1)
Vì x1 < x2 ⇒ 5(x2 – x1) > 0 ⇒ f(x1) – f(x2) > 0 hay f(x1) > f(x2).
Vậy hàm số nghịch biến (giảm) trên ℝ
b)
Tập xác định D = ℝ
Lấy x1 , x2 là hai số thực tùy ý thỏa mãn x1 < x2, ta có:
f(x1) – f(x2) = - x12 – (-x22) = x22 - x12 = (x2 – x1)(x2 + x1)
+) Với x1, x2 ∈ (-∞; 0) và x1 < x2, khi đó: x1 + x2 < 0 và x2 – x1 > 0
Do đó, f(x1) – f(x2) < 0 f(x1) < f(x2), nên hàm số f(x) đồng biến trên khoảng (-∞; 0).
+) Với x1, x2 ∈ (-∞; 0) và x1 < x2, khi đó: x1 + x2 > 0 và x2 – x1 > 0
Do đó, f(x1) – f(x2) > 0 f(x1) > f(x2) nên hàm số f(x) nghịch biến trên khoảng (0; +∞).
Vậy hàm số f(x) = -đồng biến trên khoảng (-∞; 0) và nghịch biến trên khoảng (0; +∞).
Bài 4 trang 47 Toán lớp 10 Tập 1: Vẽ đồ thị hàm số f(x) = |x|, biết rằng hàm số này còn được viết như sau:
Lời giải:
Tập xác định của hàm số D = ℝ
Ta có:
Với x = 0 thì f(0) = 0, ta được điểm O(0; 0).
Với x = 1 thì f(1) = 1, ta được điểm A(1; 1).
Với x = 2 thì f(2) = 2, ta được điểm B(2; 2).
Với x = 3 thì f(3) = 3, ta được điểm C(3; 3).
Với x = -1 thì f(-1) = - (-1) = 1, ta được điểm D(-1; 1).
Với x = -2 thì f(-2) = - (-2) = 2, ta được điểm E(-2; 2).
Với x = -3 thì f(-3) = - (-3) = 3, ta được điểm F(-3; 3).
Từ các điểm O(0; 0), A(1; 1), B(2; 2), C(3; 3), D(-1; 1), E(-2; 2), F(-3; 3) ta vẽ được đồ thị hàm số f(x) = |x| như sau:
Lời giải bài tập Toán 10 Bài 1: Hàm số và đồ thị hay khác:
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST