Phương trình đường thẳng (Lý thuyết Toán lớp 12) | Cánh diều
Với tóm tắt lý thuyết Toán 12 Bài 2: Phương trình đường thẳng sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 12 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.
Phương trình đường thẳng (Lý thuyết Toán lớp 12) | Cánh diều
Lý thuyết Phương trình đường thẳng
1. Phương trình đường thẳng
1.1. Vectơ chỉ phương của đường thẳng
Cho đường thẳng ∆ và vectơ khác . Vectơ được gọi là vectơ chỉ phương của đường thẳng ∆ nếu giá của song song hoặc trùng với ∆.
Nhận xét: Nếu là vectơ chỉ phương của một đường thẳng thì k (k ≠ 0) cũng là một vectơ chỉ phương của đường thẳng đó.
Ví dụ 1. Cho hình chóp S.ABCD có đáy là hình bình hành. Hãy chỉ ra các vectơ chỉ phương của đường thẳng BC mà điểm đầu và điểm cuối của vectơ đó đều là các đỉnh của hình chóp S.ABCD.
Hướng dẫn giải
Do các vectơ khác và có giá là đường thẳng BC nên hai vectơ này là đều là vectơ chỉ phương của đường thẳng BC.
Do các vectơ khác và có giá là đường thẳng AD song song với đường thẳng BC nên hai vectơ này đều là vectơ chỉ phương của đường thẳng BC.
Vậy đường thẳng BC nhận các vectơ làm vectơ chỉ phương.
1.2. Phương trình tham số của đường thẳng
● Trong không gian với hệ tọa độ Oxyz, nếu ∆ là đường thẳng đi qua M0(x0; y0; z0) và có vectơ chỉ phương thì ∆ có phương trình dạng
(t là tham số).
● Ngược lại, mỗi hệ phương trình , trong đó a, b, c không đồng thời bằng 0 và t là tham số, xác định một đường thẳng ∆ đi qua điểm M0(x0; y0; z0) và có một vectơ chỉ phương là .
→ Hệ phương trình , trong đó a, b, c không đồng thời bằng 0, t là tham số, được gọi là phương trình tham số của đường thẳng ∆ đi qua điểm M0(x0; y0; z0) và có vectơ chỉ phương .
Ví dụ 2. Viết phương trình tham số của đường thẳng ∆ đi qua điểm A(1; 1; 5) và có vectơ chỉ phương .
Hướng dẫn giải
Đường thẳng ∆ đi qua điểm A(1; 1; 5) và có vectơ chỉ phương có phương trình là: (t là tham số).
1.3. Phương trình chính tắc của đường thẳng
● Trong không gian với hệ tọa độ Oxyz, nếu ∆ là đường thẳng đi qua điểm M0(x0; y0; z0) và có vectơ chỉ phương (với abc ≠ 0) thì ∆ có phương trình dạng:
,
● Ngược lại, với abc ≠ 0, mỗi hệ phương trình xác định đường thẳng ∆ đi qua điểm M0(x0; y0; z0) và có một vectơ chỉ phương là .
→ Nếu abc ≠ 0 thì hệ phương trình được gọi là phương trình chính tắc của đường thẳng ∆ đi qua điểm M0(x0; y0; z0) và có vectơ chỉ phương .
Ví dụ 3. Viết phương trình chính tắc của đường thẳng ∆ đi qua điểm A(− 2; 3; 5) và có vectơ chỉ phương .
Hướng dẫn giải
Phương trình chính tắc của đường thẳng ∆ đi qua điểm A(− 2; 3; 5) và có vectơ chỉ phương là:
.
1.4. Lập phương trình đường thẳng đi qua hai điểm cho trước
Đường thẳng ∆ đi qua hai điểm A(x0; y0; z0) và B(x1; y1; z1) có:
● Phương trình tham số là: (t là tham số).
● Phương trình chính tắc là: (với x0 ≠ x1, y0 ≠ y1, z0 ≠ z1).
Ví dụ 4. Lập phương trình chính tắc và phương trình tham số của đường thẳng đi qua hai điểm M(1; 2; 1) và N(2; − 4; 2).
Hướng dẫn giải
+) Phương trình chính tắc của đường thẳng MN là:
.
+) Phương trình tham số của đường thẳng MN là: (t là tham số).
2. Vị trí tương đối của hai đường thẳng
● Trong không gian, hai vectơ được gọi là cùng phương nếu các giá của chúng cùng song song với một đường thẳng, ba vectơ được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng.
● Trong không gian Oxyz, cho ba vectơ
và .
+) Hai vectơ là cùng phương khi và chỉ khi .
+) Ba vectơ là đồng phẳng khi và chỉ khi .
● Vị trí tương đối của hai đường thẳng
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng phân biệt ∆1 , ∆2 lần lượt đi qua các điểm M1, M2 và tương ứng có là hai vectơ chỉ phương. Khi đó, ta có:
Chú ý: Trong một số trường hợp, để xét vị trí tương đối của hai đường thẳng, ta có thể giải hệ phương trình được lập từ những phương trình xác định hai đường thẳng đó, sau đó xét cặp vectơ chỉ phương của hai đường thẳng đó cùng phương hay không (nếu cần thiết).
Ví dụ 5. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: và d2: (t, m là tham số). Xác định vị trí tương đối của hai đường thẳng trên.
Hướng dẫn giải
Đường thẳng d1 đi qua điểm M1(1; 3; 0) và có là vectơ chỉ phương.
Đường thẳng d2 đi qua điểm M2(−2; 2; 3) và có là vectơ chỉ phương.
Ta có và .
Do nên không đồng phẳng.
Vậy d1 và d2 chéo nhau.
Ví dụ 6. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: và d2: (t, m là tham số). Xác định vị trí tương đối của hai đường thẳng trên.
Hướng dẫn giải
Xét hệ phương trình .
Suy ra hệ trên có nghiệm duy nhất nên hai đường thẳng d1 và d2 cắt nhau.
3. Góc
3.1. Góc giữa hai đường thẳng
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆1 và ∆2 có vectơ chỉ phương lần lượt là . Khi đó, ta có:
.
Nhận xét: ∆1 ⊥ ∆2 ⇔ a1a2 + b1b2 + c1c2 = 0.
Ví dụ 7. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: và d2: (t, m là tham số). Tính góc giữa hai đường thẳng trên.
Hướng dẫn giải
Đường thẳng d1 có vectơ chỉ phương là .
Đường thẳng d2 có vectơ chỉ phương là .
Ta có: .
Suy ra (d1, d2) = 60°.
Ví dụ 8. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:
d1: và d2: (t, m là tham số).
Chứng minh rằng hai đường thẳng trên vuông góc với nhau.
Hướng dẫn giải
Hai đường thẳng d1 và d2 có vectơ chỉ phương lần lượt là ; .
Ta có . Do đó d1 ⊥ d2.
3.2. Góc giữa đường thẳng và mặt phẳng
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có vectơ chỉ phương và mặt phẳng (P) có vectơ pháp tuyến . Gọi (∆, (P)) là góc giữa đường thẳng ∆ và mặt phẳng (P). Khi đó,
.
Ví dụ 9. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆: và mặt phẳng (P): 5x + 11y + 2z – 20 = 0. Tính góc giữa đường thẳng ∆ và mặt phẳng (P).
Hướng dẫn giải
Đường thẳng ∆ có một vectơ chỉ phương là và mặt phẳng (P) có một vectơ pháp tuyến là .
Ta có: .
Suy ra (∆, (P)) = 30°.
3.3. Góc giữa hai mặt phẳng
● Góc giữa hai mặt phẳng (P1) và (P2) là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó, kí hiệu là ((P1), (P2)).
● Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P1), (P2) có vectơ pháp tuyến lần lượt là , .
Khi đó, ta có:
.
Ví dụ 10. Cho hai mặt phẳng (P): 3x – y + z – 5 = 0 và (Q): 2x + 3y – 2z – 8 = 0. Tính góc giữa hai mặt phẳng (P) và (Q).
Hướng dẫn giải
Do (P) và (Q) có hai vectơ pháp tuyến lần lượt là , .
nên .
Suy ra ((P), (Q)) ≈ 86°.
Bài tập Phương trình đường thẳng
Bài 1. Trong không gian Oxyz, cho đường thẳng d: . Vectơ nào dưới đây là một vectơ chỉ phương của d?
Hướng dẫn giải
Đáp án đúng là: A
Đường thẳng d: có một vectơ chỉ phương là .
Bài 2. Đường thẳng đi qua điểm A(1; 5; – 3) nhận làm vectơ chỉ phương có phương trình tham số là:
Hướng dẫn giải
Đáp án đúng là: C
Phương trình tham số của đường thẳng đi qua điểm A(1; 5; – 3) nhận làm vectơ chỉ phương là: (t là tham số).
Bài 3. Viết phương trình tham số và phương trình chính tắc của đường thẳng ∆ trong mỗi trường hợp sau:
a) ∆ đi qua điểm A(− 2; 3; 4) và có vectơ chỉ phương .
b) ∆ đi qua điểm B(− 3; 2; 6) và vuông góc với mặt phẳng (α): x + 2y – 3z + 10 = 0.
Hướng dẫn giải
a) +) Phương trình tham số của đường thẳng ∆ là: (t là tham số).
+) Phương trình chính tắc của đường thẳng ∆ là: .
b) Mặt phẳng (α) có vectơ pháp tuyến là .
Vì ∆ (α) nên đường thẳng ∆ nhận làm một vectơ chỉ phương.
Đường thẳng ∆ đi qua điểm B(−3; 2; 6), có là vectơ pháp tuyến có:
+) Phương trình tham số là: (t là tham số).
+) Phương trình chính tắc là: .
Bài 4. Cho hai đường thẳng d1: (t là tham số) và d2: .
Chứng minh rằng d1 và d2 cắt nhau. Tìm tọa độ giao điểm của d1 và d2.
Hướng dẫn giải
Đường thẳng d2 có phương trình tham số là (t' là tham số).
Xét hệ phương trình .
Hệ có nghiệm duy nhất. Do đó d1 và d2 cắt nhau.
Với t = 4 thay vào phương trình đường thẳng d1 ta có .
Vậy tọa độ giao điểm của hai đường thẳng là (10; −1; 0).
Bài 5.
a) Tính góc giữa hai đường thẳng d1: và d2: .
b) Cho mặt phẳng (P): . Tính góc tạo bởi (P) và trục Ox.
c) Cho hai mặt phẳng (P): − 2x + 11y – 5z + 13 = 0 và (Q): x + 2y + z – 10 = 0. Tính góc giữa hai mặt phẳng (P) và (Q).
Hướng dẫn giải
a) Đường thẳng d1, d2 có vectơ chỉ phương lần lượt là .
Ta có: .
Suy ra (d1, d2) = 90°.
b) Mặt phẳng (P) có vectơ pháp tuyến .
Trục Ox có vectơ chỉ phương là .
Ta có: .
Suy ra (Ox, (P)) = 60°.
c) Hai mặt phẳng (P) và (Q) có vectơ pháp tuyến lần lượt là:
.
Ta có: .
Suy ra ((P), (Q)) = 60°.
Bài 6. Một công ty xây dựng đang thiết kế một tòa nhà mới. Để tối ưu hóa ánh sáng tự nhiên trong tòa nhà, họ cần xác định góc giữa ánh sáng mặt trời (được biểu diễn bằng một đường thẳng) và mặt phẳng của một bức tường kính. Giả sử rằng:
+ Bức tường kính được đặt trong mặt phẳng (P) có phương trình 2x – 3y + z – 10 = 0.
+ Tia sáng mặt trời được biểu diễn bởi đường thẳng d có phương trình chính tắc .
Hãy tính góc giữa đường thẳng d và mặt phẳng (P) (làm tròn kết quả đến đơn vị độ).
Hướng dẫn giải
Mặt phẳng (P) có vectơ pháp tuyến là .
Đường thẳng d có vectơ chỉ phương là .
Ta có .
Suy ra (d, (α)) ≈ 61°.
Học tốt Phương trình đường thẳng
Các bài học để học tốt Phương trình đường thẳng Toán lớp 12 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 12 Cánh diều hay khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Cánh diều
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải SBT Toán 12 Cánh diều
- Giải lớp 12 Cánh diều (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều