Bài 3 trang 42 Toán 12 Tập 2 Chân trời sáng tạo

Giải Toán 12 Bài 1: Phương trình mặt phẳng - Chân trời sáng tạo

Bài 3 trang 42 Toán 12 Tập 2: Cho tứ diện ABCD có các đỉnh A(4; 0; 2), B(0; 5; 1), C(4; −1; 3), D(3; −1; 5).

Quảng cáo

a) Hãy viết phương trình của các mặt phẳng (ABC) và (ABD).

b) Hãy viết phương trình mặt phẳng (P) đi qua cạnh BC và song song với cạnh AD.

Lời giải:

Ta có AB=4;5;1,AC=0;1;1,AD=1;1;3, BC=4;6;2.

a) Mặt phẳng (ABC) có AB=4;5;1,AC=0;1;1 là cặp vectơ chỉ phương.

Do đó mặt phẳng (ABC) nhận

n=14AB,AC=145.11.1;1.0+1.4;4.10.5=1;1;1.

Mặt phẳng (ABC) đi qua điểm A(4; 0; 2) và n=1;1;1 làm một vectơ pháp tuyến có phương trình là (x – 4) + y + (z – 2) = 0 ⇔ x + y + z – 6 = 0.

Mặt phẳng (ABD) nhận AB=4;5;1, AD=1;1;3 làm cặp vectơ chỉ phương.

Do đó mặt phẳng (ABD) nhận

n'=AB,AD=5.31.1;1.1+3.4;4.1+1.5=14;13;9.

Mặt phẳng (ABD) đi qua điểm A(4; 0; 2) và n'=14;13;9 làm một vectơ pháp tuyến có phương trình là 14(x – 4) + 13y + 9(z – 2) = 0 ⇔ 14x + 13y + 9z – 74 = 0.

b) Mặt phẳng (P) đi qua cạnh BC và song song với cạnh AD nhận BC=4;6;2, AD=1;1;3 làm cặp vectơ chỉ phương.

Do đó mặt phẳng (P) nhận

nP=12BC,AD=126.3+1.2;2.13.4;4.11.6=8;7;5.

Mặt phẳng (P) đi qua điểm B(0; 5; 1) và nhận nP=8;7;5 làm một vectơ pháp tuyến có phương trình là 8x + 7(y – 5) + 5(z – 1) = 0 ⇔ 8x + 7y + 5z – 40 = 0.

Quảng cáo

Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Chân trời sáng tạo khác
Tài liệu giáo viên