Thực hành 3 trang 36 Toán 12 Tập 2 Chân trời sáng tạo
Giải Toán 12 Bài 1: Phương trình mặt phẳng - Chân trời sáng tạo
Thực hành 3 trang 36 Toán 12 Tập 2: Cho hai mặt phẳng (α), (β) có phương trình tổng quát là (α): 2x + 2y – 3z – 4 = 0 và (β): x + 4z – 12 = 0.
a) Tìm một vectơ pháp tuyến của mỗi mặt phẳng (α), (β).
b) Tìm điểm thuộc mặt phẳng (α) trong số các điểm: M(1; 0; 1), N(1; 1; 0).
Lời giải:
a) Mặt phẳng (α) có một vectơ pháp tuyến là
Mặt phẳng (β) có một vectơ pháp tuyến là
b) Thay tọa độ điểm M vào phương trình (α) ta được: 2.1 + 2.0 – 3.1 – 4 = −5 ≠ 0.
Vậy M không thuộc mặt phẳng (α).
Thay tọa độ điểm N vào phương trình (α) ta được: 2.1 + 2.1 – 3.0 – 4 = 0.
Vậy N thuộc mặt phẳng (α).
Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay, chi tiết khác:
Thực hành 6 trang 40 Toán 12 Tập 2: Tìm các cặp mặt phẳng vuông góc trong các mặt phẳng sau ....
Bài 2 trang 42 Toán 12 Tập 2: a) Lập phương trình của các mặt phẳng tọa độ (Oxy), (Oyz), (Oxz) ....
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST