Giải Toán 12 trang 30 Tập 2 Kết nối tri thức

Với Giải Toán 12 trang 30 Tập 2 trong Bài 14: Phương trình mặt phẳng Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 30.

Giải Toán 12 trang 30 Tập 2 Kết nối tri thức

Quảng cáo

Luyện tập 1 trang 30 Toán 12 Tập 2: Trong không gian Oxyz, cho các điểm A(1; −2; 3), B(−3; 0; 1). Gọi (α) là mặt phẳng trung trực của đoạn thẳng AB. Hãy chỉ ra một vectơ pháp tuyến của (α).

Lời giải:

Vì (α) là mặt phẳng trung trực của đoạn thẳng AB nên giá của ABα.

Do đó AB=4;2;2 là một vectơ pháp tuyến của mặt phẳng (α).

HĐ2 trang 30 Toán 12 Tập 2: Trong không gian Oxyz, cho hai vectơ u=a;b;c và v=a';b';c'.

a) Vectơ n=bc'b'c;ca'c'a;ab'a'b có vuông góc với cả hai vectơ uv hay không?

b) n=0 khi và chỉ khi uv có mối quan hệ gì?

Lời giải:

a) Ta có n.u=bc'b'c.a+ca'c'a.b+ab'a'b.c

= bc'a – b'ca + ca'b – c'ab + ab'c – a'bc

= (bc'a – c'ab) + (ab'c – b'ca) + (ca'b – a'bc)

= 0.

Quảng cáo

Do đó vectơ n vuông góc với vectơ u.

Ta có n.v=bc'b'c.a'+ca'c'a.b'+ab'a'b.c'

= bc'a' – b'ca' + ca'b' – c'ab' + ab'c' – a'bc'

= (bc'a' – c'a'b) + (ab'c' – b'c'a) + (ca'b' – a'b'c)

= 0.

Do đó vectơ n vuông góc với vectơ v.

Suy ra vectơ n vuông góc với cả 2 vectơ uv.

b) Nếu n=0 thì bc'b'c=0ca'c'a=0ab'a'b=0 (I).

+) Nếu a = b = c = 0 thì (I) luôn đúng khi đó uv cùng phương với nhau.

+) Nếu a ≠ 0; b ≠ 0; c ≠ 0 thì (I) ta suy ra b'b=c'ca'a=c'ca'a=b'b.

Do đó, a' = ka; b' = kb, c' = kc (k ∈ ℝ).

Suy ra v=ku. Do đó uv cùng phương với nhau.

Vậy n=0 khi và chỉ khi uv cùng phương.

Lời giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng hay khác:

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Kết nối tri thức khác
Tài liệu giáo viên