Giải Toán 12 trang 37 Tập 2 Kết nối tri thức
Với Giải Toán 12 trang 37 Tập 2 trong Bài 14: Phương trình mặt phẳng Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 37.
Giải Toán 12 trang 37 Tập 2 Kết nối tri thức
HĐ9 trang 37 Toán 12 Tập 2: Trong không gian Oxyz, cho hai mặt phẳng (α): Ax + By + Cz + D = 0, (β): A'x + B'y + C'x + D' = 0, với các vectơ pháp tuyến
Nếu hai mặt phẳng (α) và (β) song song hoặc trùng nhau thì các vectơ pháp tuyến có mối quan hệ gì?
Lời giải:
Hai mặt phẳng (α) và (β) song song hoặc trùng nhau khi và chỉ khi các vectơ pháp tuyến cùng phương. Tức là
Nếu D = kD' thì ta có mặt phẳng (α) và (β) trùng nhau.
Nếu D ≠ kD' thì ta có mặt phẳng (α) và (β) song song.
Vậy suy ra:
Luyện tập 10 trang 37 Toán 12 Tập 2: Trong không gian Oxyz, cho hai mặt phẳng: (α): 5x + 2y – 4z + 6 = 0 và (β): 10x + 4y – 2z + 12 = 0.
a) Hỏi (α) và (β) có song song với nhau hay không?
b) Chứng minh rằng điểm M(1; −3; 5) không thuộc mặt phẳng (α) nhưng thuộc mặt phẳng (β).
c) Viết phương trình mặt phẳng (P) đi qua M(1; −3; 5) và song song với (α).
Lời giải:
a) Ta có không cùng phương nên (α) và (β) không song song với nhau.
b) Ta có 5.1 + 2.(−3) – 4.5 + 6 = −15 ≠ 0. Do đó điểm M(1; −3; 5) không thuộc mặt phẳng (α).
Ta có 10.1 + 4.(−3) – 2.5 +12 = 0. Do đó điểm M(1; −3; 5) thuộc mặt phẳng (β).
c) Vì (P) // (α) nên mặt phẳng (P) nhận làm một vectơ pháp tuyến.
Mặt phẳng (P) đi qua M(1; −3; 5), có vectơ pháp tuyến có phương trình là: 5(x – 1) + 2(y + 3) – 4(z – 5) = 0 hay 5x + 2y – 4z + 21 = 0.
Vận dụng 4 trang 37 Toán 12 Tập 2: Trong một kì thi tuyển sinh có ba môn thi Toán, Văn, Tiếng Anh. Trong không gian Oxyz, người ta biểu diễn kết quả thi của mỗi thí sinh bởi điểm có hoành độ, tung độ, cao độ tương ứng là điểm Toán, Văn, Tiếng Anh của thí sinh đó.
a) Chứng minh rằng các điểm biểu diễn tương ứng với các thí sinh có tổng số điểm ba môn thi bằng 27 (nếu có) cùng thuộc mặt phẳng có phương trình x + y + z – 27 = 0.
b) Chứng minh rằng tồn tại một số mặt phẳng đôi một song song với nhau sao cho hai điểm biểu diễn ứng với thí sinh có tổng số điểm thi bằng nhau thì cùng thuộc một mặt phẳng trong số các mặt phẳng đó.
Lời giải:
a) Giả sử một thí sinh có số điểm Toán, Văn, Tiếng Anh lần lượt là x; y; z.
Tổng điểm của thí sinh này là: x + y + z = 27.
Điều này có nghĩa là điểm (x; y; z) thỏa mãn phương trình:
x + y + z = 27 hay x + y + z – 27 = 0.
Do đó tất cả các điểm (x; y; z) biểu diễn tương ứng với các thí sinh có tổng số điểm ba môn thi bằng 27 (nếu có) cùng thuộc mặt phẳng có phương trình x + y + z – 27 = 0.
b) Giả sử S là tổng điểm thi của một thí sinh. Khi đó phương trình biểu diễn các điểm có tổng số điểm thi bằng S là: x + y + z = S hay x + y + z – S = 0.
Các mặt phẳng có phương trình dạng: x + y + z – S = 0 với S là tổng số điểm thi của các thí sinh là các mặt phẳng song song với nhau vì chúng có cùng vectơ pháp tuyến là (1; 1; 1).
Do đó, tất cả các điểm (x; y; z) biểu diễn kết quả của các thí sinh có tổng số điểm thi bằng nhau cùng thuộc một mặt phẳng trong số các mặt phẳng song song này.
Lời giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng hay khác:
- Giải Toán 12 trang 29
- Giải Toán 12 trang 30
- Giải Toán 12 trang 31
- Giải Toán 12 trang 32
- Giải Toán 12 trang 33
- Giải Toán 12 trang 34
- Giải Toán 12 trang 35
- Giải Toán 12 trang 36
- Giải Toán 12 trang 39
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT