Giải Toán 12 trang 35 Tập 2 Kết nối tri thức

Với Giải Toán 12 trang 35 Tập 2 trong Bài 14: Phương trình mặt phẳng Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 35.

Giải Toán 12 trang 35 Tập 2 Kết nối tri thức

Quảng cáo

Luyện tập 8 trang 35 Toán 12 Tập 2: (H.5.8) Trong không gian Oxyz, cho mặt phẳng (α) không đi qua gốc tọa độ và cắt ba trục Ox, Oy, Oz tương ứng tại các điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) (a, b, c ≠ 0).

Chứng minh rằng mặt phẳng (α) có phương trình: xa+yb+zc=1

Luyện tập 8 trang 35 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Mặt phẳng (α) nhận AB=a;b;0AC=a;0;c làm một cặp vectơ chỉ phương. Do đó mặt phẳng (α) nhận n=AB,AC=b00c;0aca;aba0=bc;ca;ba làm một vectơ pháp tuyến.

Khi đó phương trình mặt phẳng (α) đi qua điểm A(a; 0; 0) và nhận n=bc;ca;ba làm vectơ pháp tuyến có dạng: bc(x – a) + cay + baz = 0 ⇔ bcx + cay + baz = abcbcxabc+cayabc+bazabc=1xa+yb+zc=1

Vận dụng 2 trang 35 Toán 12 Tập 2: Trong tình huống mở đầu, hãy thực hiện các bước sau và trả lời câu hỏi đã được nêu ra.

a) Xác định tọa độ của vị trí M1, M2, M3 của vật tương ứng với các thời điểm t = 0, t=π2, t = π.

b) Chứng minh rằng M1, M2, M3 không thẳng hàng và viết phương trình mặt phẳng (M1M2M3).

c) Vị trí M(cost – sint; cost + sint; cost) có luôn thuộc mặt phẳng (M1M2M3) hay không?

Quảng cáo

Lời giải:

a) Thời điểm t = 0, vật ở vị trí M1(1; 1; 1).

Thời điểm t=π2, vật ở vị trí M2(−1; 1; 0).

Thời điểm t = π, vật ở vị trí M3(−1; −1; −1).

b) Có M1M2=2;0;1M1M3=2;2;2 không cùng phương nên ba điểm M1, M2, M3 không thẳng hàng.

Mặt phẳng (M1M2M3) có M1M2=2;0;1M1M3=2;2;2 là cặp vectơ chỉ phương nên có vectơ pháp tuyến

n=M1M2,M1M3=0122;1222;2022=2;2;4

Mặt phẳng (M1M2M3) đi qua M1(1; 1; 1) và có vectơ pháp tuyến n=2;2;4 có phương trình là: −2(x – 1) – 2(y – 1) + 4(z – 1) = 0 hay 2x + 2y – 4z = 0.

c) Ta có 2(cost – sint) + 2(cost + sint) – 4 cost = 0 nên vị trí M(cost – sint; cost + sint; cost) luôn thuộc mặt phẳng (M1M2M3).

Do đó vị trí M(cost – sint; cost + sint; cost) luôn thuộc mặt phẳng 2x + 2y – 4z = 0.

HĐ8 trang 35 Toán 12 Tập 2: Trong không gian Oxyz, cho hai mặt phẳng: (α): Ax + By + Cz + D = 0, (β): A'x + B'y + C'z + D' = 0, với hai vectơ pháp tuyến n=A;B;C,n'=A';B';C' tương ứng.

a) Góc giữa hai mặt phẳng (α), (β) và góc giữa hai giá của n,n' có mối quan hệ gì?

b) Hai mặt phẳng (α) và (β) vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng n,n' có mối quan hệ gì?

Quảng cáo

Lời giải:

a) Vì n,n' lần lượt là vectơ pháp tuyến của mặt phẳng (α) và (β) nên giá của n,n' lần lượt vuông góc với mặt phẳng (α) và (β).

Do đó góc giữa hai mặt phẳng (α), (β) bằng góc giữa hai giá của n,n'

b) Hai mặt phẳng (α) và (β) vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng n,n' vuông góc với nhau.

Lời giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng hay khác:

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Kết nối tri thức khác
Tài liệu giáo viên