Giải Toán 12 trang 35 Tập 2 Kết nối tri thức
Với Giải Toán 12 trang 35 Tập 2 trong Bài 14: Phương trình mặt phẳng Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 35.
Giải Toán 12 trang 35 Tập 2 Kết nối tri thức
Luyện tập 8 trang 35 Toán 12 Tập 2: (H.5.8) Trong không gian Oxyz, cho mặt phẳng (α) không đi qua gốc tọa độ và cắt ba trục Ox, Oy, Oz tương ứng tại các điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) (a, b, c ≠ 0).
Chứng minh rằng mặt phẳng (α) có phương trình:
Lời giải:
Mặt phẳng (α) nhận và làm một cặp vectơ chỉ phương. Do đó mặt phẳng (α) nhận làm một vectơ pháp tuyến.
Khi đó phương trình mặt phẳng (α) đi qua điểm A(a; 0; 0) và nhận làm vectơ pháp tuyến có dạng: bc(x – a) + cay + baz = 0 ⇔ bcx + cay + baz = abc
Vận dụng 2 trang 35 Toán 12 Tập 2: Trong tình huống mở đầu, hãy thực hiện các bước sau và trả lời câu hỏi đã được nêu ra.
a) Xác định tọa độ của vị trí M1, M2, M3 của vật tương ứng với các thời điểm t = 0, , t = π.
b) Chứng minh rằng M1, M2, M3 không thẳng hàng và viết phương trình mặt phẳng (M1M2M3).
c) Vị trí M(cost – sint; cost + sint; cost) có luôn thuộc mặt phẳng (M1M2M3) hay không?
Lời giải:
a) Thời điểm t = 0, vật ở vị trí M1(1; 1; 1).
Thời điểm , vật ở vị trí M2(−1; 1; 0).
Thời điểm t = π, vật ở vị trí M3(−1; −1; −1).
b) Có và không cùng phương nên ba điểm M1, M2, M3 không thẳng hàng.
Mặt phẳng (M1M2M3) có và là cặp vectơ chỉ phương nên có vectơ pháp tuyến
Mặt phẳng (M1M2M3) đi qua M1(1; 1; 1) và có vectơ pháp tuyến có phương trình là: −2(x – 1) – 2(y – 1) + 4(z – 1) = 0 hay 2x + 2y – 4z = 0.
c) Ta có 2(cost – sint) + 2(cost + sint) – 4 cost = 0 nên vị trí M(cost – sint; cost + sint; cost) luôn thuộc mặt phẳng (M1M2M3).
Do đó vị trí M(cost – sint; cost + sint; cost) luôn thuộc mặt phẳng 2x + 2y – 4z = 0.
HĐ8 trang 35 Toán 12 Tập 2: Trong không gian Oxyz, cho hai mặt phẳng: (α): Ax + By + Cz + D = 0, (β): A'x + B'y + C'z + D' = 0, với hai vectơ pháp tuyến tương ứng.
a) Góc giữa hai mặt phẳng (α), (β) và góc giữa hai giá của có mối quan hệ gì?
b) Hai mặt phẳng (α) và (β) vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng có mối quan hệ gì?
Lời giải:
a) Vì lần lượt là vectơ pháp tuyến của mặt phẳng (α) và (β) nên giá của lần lượt vuông góc với mặt phẳng (α) và (β).
Do đó góc giữa hai mặt phẳng (α), (β) bằng góc giữa hai giá của
b) Hai mặt phẳng (α) và (β) vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng vuông góc với nhau.
Lời giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng hay khác:
- Giải Toán 12 trang 29
- Giải Toán 12 trang 30
- Giải Toán 12 trang 31
- Giải Toán 12 trang 32
- Giải Toán 12 trang 33
- Giải Toán 12 trang 34
- Giải Toán 12 trang 36
- Giải Toán 12 trang 37
- Giải Toán 12 trang 39
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT