Giải Toán 12 trang 7 Tập 1 Kết nối tri thức
Với Giải Toán 12 trang 7 Tập 1 trong Bài 1: Tính đơn điệu và cực trị của hàm số Toán 12 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 7.
Giải Toán 12 trang 7 Tập 1 Kết nối tri thức
HĐ2 trang 7 Toán 12 Tập 1: Xét hàm số có đồ thị như hình 1.6
a) Xét dấu đạo hàm của hàm số trên các khoảng (−∞; −1), (1; +∞). Nêu nhận xét về mối quan hệ giữa tính đồng biến, nghịch biến và dấu đạo hàm của hàm số trên mỗi khoảng này.
b) Có nhận xét gì về đạo hàm y' và hàm số y trên khoảng (−1;1)?
Lời giải:
a) +) Với x < −1, ta có y' = −1 < 0.
+) Với x > 1, ta có y' = 1 > 0.
Nhận xét:
+ Với x ∈ (−∞; −1), ta có y' < 0 thì hàm số nghịch biến.
+ Với x ∈ (1; +∞), ta có y' > 0 thì hàm số đồng biến.
b) Với x ∈ (−1;1) ta có y' = 0 thì hàm số y không đổi.
Luyện tập 2 trang 7 Toán 12 Tập 1: Tìm các khoảng đồng biến, khoảng nghịch biến của hàm số y = −x2 + 2x + 3.
Lời giải:
Tập xác định của hàm số là ℝ.
Có y' = −2x + 2.
y' > 0 với x ∈ (−∞; 1) và y' < 0 với x ∈ (1; +∞).
Do đó hàm số đồng biến trên khoảng (−∞; 1) và nghịch biến trên khoảng (1; +∞).
HĐ3 trang 7 Toán 12 Tập 1: Cho hàm số y = f(x) = x3 – 3x2 + 2x + 1.
a) Tính đạo hàm f'(x) và tìm các điểm x mà f'(x) = 0.
b) Lập bảng biến thiên của hàm số, tức là lập bảng thể hiện dấu của đạo hàm và sự đồng biến, nghịch biến của hàm số trên các khoảng tương ứng.
c) Nêu kết luận về khoảng đồng biến, nghịch biến của hàm số.
Lời giải:
a) Có f'(x) = 3x2 – 6x + 2.
f’(x) = 0 3x2 – 6x + 2 = 0
b)
c) Hàm số đồng biến trên các khoảng và
Hàm số nghịch biến trên khoảng .
Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay khác:
- Giải Toán 12 trang 6
- Giải Toán 12 trang 9
- Giải Toán 12 trang 10
- Giải Toán 12 trang 12
- Giải Toán 12 trang 13
- Giải Toán 12 trang 14
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT