Cách sử dụng các kí hiệu với mọi, tồn tại (cách giải + bài tập)

Bài viết phương pháp giải bài tập sử dụng các kí hiệu với mọi, tồn tại lớp 10 chương trình sách mới hay, chi tiết với bài tập tự luyện đa dạng giúp học sinh ôn tập, biết cách làm bài tập sử dụng các kí hiệu với mọi, tồn tại.

Cách sử dụng các kí hiệu với mọi, tồn tại (cách giải + bài tập)

Quảng cáo

1. Phương pháp giải

- Kí hiệu ∀: đọc là “với mọi” có nghĩa là tất cả các giá trị của một biến nào đó.

- Kí hiệu ∃: đọc là “tồn tại” có nghĩa là chỉ có một số giá trị hữu hạn thỏa mãn.

Một số lưu ý:

- Phủ định của mệnh đề “P(x): ∀x ∈ X” là mệnh đề “P(x)¯: ∃x ∈ X”.

- Phủ định của mệnh đề “P(x): ∃x ∈ X” là mệnh đề “P(x)¯: ∀x ∈ X”.

- Mệnh đề “∀x ∈ X, P(x)” đúng nếu với mọi x0 ∈ X, P(x0) là mệnh đề đúng.

- Mệnh đề “∃x ∈ X, P(x)” đúng nếu có x0 ∈ X sao cho P(x0) là mệnh đề đúng.

2. Ví dụ minh họa

Ví dụ 1: Cho mệnh đề: “∀x ∈ ℕ: x + 1 > 0”.

Phát biểu thành lời mệnh đề trên và xét tính đúng sai của nó.

Hướng dẫn giải:

Mệnh đề trên được phát biểu như sau:

“Với mọi số tự nhiên x thì x + 1 luôn lớn hơn 0”.

Hoặc ta có thể phát biểu như sau: “Với mọi số tự nhiên thì tổng của chính nó với 1 luôn lớn hơn 0”.

Vì x là số tự nhiên nên x ≥ 0 ⇒ x + 1 > 0 (đúng).

Quảng cáo

Vì vậy mệnh đề trên đúng.

Ví dụ 2: Phát biểu và xét tính đúng sai của các mệnh đề sau:

a) “∀x ∈ ℝ: x2 > 0”.

b) “∀x ∈ ℝ: x2 – 2x + 1 ≥ 0”.

c) “∃x ∈ ℤ: x2 – 4x + 3 = 0”.

Hướng dẫn giải:

a) Mệnh đề “∀x ∈ ℝ: x2 > 0” được phát biểu như sau:

“Với mọi số thực x thì x2 luôn lớn hơn 0”.

Hoặc “Với mọi số thực thì bình phương của nó luôn dương”.

Ta có: 0 ∈ ℝ, 02 = 0.

Do đó mệnh đề trên sai.

b) Mệnh đề “∀x ∈ ℝ: x2 – 2x + 1 ≥ 0” được phát biểu như sau:

“Với mọi số thực x thì x2 – 2x + 1 luôn lớn hơn hoặc bằng 0”.

Ta có: x2 – 2x + 1 = (x – 1)2

Quảng cáo

Mà bình phương của một số luôn lớn hơn hoặc bằng 0.

Suy ra mệnh đề trên đúng.

c) Mệnh đề “∃x ∈ ℤ: x2 – 4x + 3 = 0” được phát biểu như sau:

“Tồn tại số nguyên x để phương trình x2 – 4x + 3 = 0 bằng 0”.

Hoặc “Có một số nguyên x để phương trình x2 – 4x + 3 = 0 bằng 0”.

Ta có: x2 – 4x + 3 = 0 ⇔ x = 1 hoặc x = 3. 

Do đó tồn tại hai số nguyên x là 1 v à 3 để phương trình x2 – 4x + 3 = 0 bằng 0.

Vì vậy mệnh đề trên đúng. 

3. Bài tập tự luyện

Bài 1: Cho mệnh đề: “∀x ∈ ℝ, x < 3 ⇒ x2 < 9”.

Mệnh đề trên được phát biểu như thế nào?

A. Tồn tại số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;

B. Với mọi số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;

C. Không có số thực x nào mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;

D. Có duy nhất một số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9.

Quảng cáo

Bài 2: Cho mệnh đề sau: “… x ∈ ℝ, 4x2 – 1 = 0”.

Chỗ trống trong mệnh đề trên có thể điền kí hiệu nào dưới đây để mệnh đề đúng?

A. ∀;

B. ∃;

C. Cả hai kí hiệu ∀ và ∃ đều được;

D. Không có kí hiệu nào thỏa mãn.

Bài 3: Mệnh đề “Mọi số chẵn đều chia hết cho 2” có mệnh đề phủ định là:

A. Mọi số chẵn đều không chia hết cho 2;

B. Có ít nhất một số chẵn chia hết cho 2;

C. Mọi số chẵn đều không chia hết cho 2;

D. Có ít nhất một số chẵn không chia hết cho 2.

Bài 4: Mệnh đề nào sau đây đúng?

A. ∃x ∈ ℤ, x2 – 4 = 0;

B. ∀x ∈ ℤ, x2 + 1 chia hết cho 3;

C. ∀x ∈ ℤ, x2 > x;

D. ∃x ∈ ℤ, x2 + 1 = 0.

Bài 5: Cho hai mệnh đề sau:

A: “∀x ∈ ℝ: x2 – 4 ≠ 0” ;

B: “∃x ∈ ℝ: x2 = x”.

Xét tính đúng sai của hai mệnh đề trên.

A. A đúng, B sai;

B. A sai, B đúng;

C. A đúng, B đúng;

D. A sai, B sai.

Bài 6: Kí hiệu X là tập hợp tất cả các bạn học sinh x trong lớp 10A1, P(x) là mệnh đề chứa biến “x đạt học sinh giỏi”. Mệnh đề “∃x ∈ X, P(x)” khẳng định rằng:

A. Tất cả các bạn học sinh trong lớp 10A1 đều đạt học sinh giỏi;

B. Bất cứ ai đạt học sinh giỏi đều học lớp 10A1;

C. Có một số bạn học lớp 10A1 đạt học sinh giỏi;

D. Tất cả các bạn học sinh trong lớp 10A1 đều không đạt học sinh giỏi.

Bài 7: Mệnh đề “∀x ∈ ℤ, x2 + 1 > 0” được phát biểu là:

A. Với mọi số nguyên x, ta có x2 + 1 luôn lớn hơn 0;

B. Tồn tại duy nhất một số nguyên x để x2 + 1 luôn lớn hơn 0;

C. Tồn tại ít nhất một số nguyên x để x2 + 1 luôn lớn hơn 0;

D. Không có số nguyên nào thỏa mãn bất đẳng thức x2 + 1 > 0.

Bài 8: Mệnh đề nào sau đây sai?

A. ∀x ∈ ℕ, x ≤ 2x;

B. ∀x ∈ ℝ, x ≥ 0;

C. ∃x ∈ ℕ, x2 = x;

D. ∀x ∈ ℝ, x > 0.

Bài 9: Cho mệnh đề : “∀x ∈ ℝ, x3 – 5x + 6 ≥ 0”.

Mệnh đề phủ định của mệnh đề trên là:

A. x , x3 – 5x + 6 ≥ 0;

B. x , x3 – 5x + 6 < 0;

C. x , x3 – 5x + 6 ≥ 0;

D. x , x3 – 5x + 6 < 0.

Bài 10: Cho các mệnh đề sau:

(1) x , |x| > 1 x > 1.

(2) x , 2x2 8 = 0.

(3) x , 2x + 1 là số nguyên tố.

Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?

A. 0;

B. 1;

C. 2;

D. 3.

Xem thêm các dạng bài tập Toán 10 hay, chi tiết khác:

Lời giải bài tập lớp 10 sách mới:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 sách mới các môn học
Tài liệu giáo viên