Xét dấu của biểu thức chứa tam thức bậc hai (cách giải + bài tập)
Bài viết phương pháp giải bài tập Xét dấu của biểu thức chứa tam thức bậc hai lớp 10 chương trình sách mới hay, chi tiết với bài tập tự luyện đa dạng giúp học sinh ôn tập, biết cách làm bài tập Xét dấu của biểu thức chứa tam thức bậc hai.
Xét dấu của biểu thức chứa tam thức bậc hai (cách giải + bài tập)
1. Phương pháp giải
– Tam thức bậc hai (đối với x) là biểu thức có dạng ax2 + bx + c, trong đó a, b, c là những số thực cho trước (với a ≠ 0), được gọi là các hệ số của tam thức bậc hai.
– Định lí về dấu của tam thức bậc hai:
Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0).
Δ = b2 – 4ac.
⦁ Nếu Δ < 0 thì f(x) cùng dấu với hệ số a với mọi x ∈ ℝ .
⦁ Nếu Δ = 0 thì f(x) cùng dấu với hệ số a với mọi
⦁ Nếu Δ > 0 thì f(x) có hai nghiệm phân biệt x1 và x2 (x1 < x2).
Khi đó, f(x) cùng dấu với hệ số a với mọi x ∈ (–∞; x1) ∪ (x2; +∞);
f(x) trái dấu với hệ số a với mọi x ∈ (x1; x2).
* Chú ý: Ta có thể dùng Δ’ = b’2 – 4ac với thay cho Δ khi hệ số b là số chẵn.
– Phương pháp xét dấu của biểu thức chứa tam thức bậc hai:
+ Nếu biểu thức f(x) là tam thức bậc hai thì ta sử dụng định lý về dấu của tam thức bậc hai để xét dấu của biểu thức đó.
Bước 1. Tính và xác định dấu của biệt thức ∆;
Bước 2. Xác định nghiệm của f(x) (nếu có);
Bước 3. Xác định dấu của hệ số a;
Bước 4. Xác định dấu của f(x) theo định lí về dấu của tam thức bậc hai.
+ Nếu biểu thức f(x) là tích, thương các nhị thức bậc nhất, tam thức bậc hai thì ta thực hiện theo các bước sau:
Bước 1. Tìm nghiệm của f(x) = 0 và những giá trị f(x) không xác định.
Bước 2. Lập bảng xét dấu của f(x).
Bước 3. Dựa vào bảng xét dấu và kết luận.
2. Ví dụ minh họa
Ví dụ 1. Xét dấu của mỗi tam thức sau:
a) f(x) = x2 – 5x + 11;
b) f(x) = x2 – 4x + 4;
c) f(x) = –3x2 – 2x + 5.
Hướng dẫn giải:
a) f(x) = x2 – 5x + 11 có hệ số: a = 1; b = –5; c = 11.
Do đó Δ = b2 – 4ac = (–5)2 – 4.1.11 = –19 < 0.
Mà hệ số a = 1 > 0.
Vậy f(x) > 0 với mọi x ∈ ℝ.
b) f(x) = x2 – 4x + 4 có hệ số: a = 1; b = –4; c = 4.
Do đó Δ = b2 – 4ac = (–4)2 – 4.1.4 = 0.
Ta có f(x) có nghiệm kép x = 2 và hệ số a = 1 > 0.
Vậy f(x) > 0 với mọi x ≠ 2 và f(x) = 0 với x = 2.
c) f(x) = –3x2 – 2x + 5 có hệ số: a = –3; b = –2; c = 5.
Do đó Δ = b2 – 4ac = (–2)2 – 4.(–3).4 = 52 > 0
f(x) có hai nghiệm x2 = 1 và hệ số a = –3 < 0.
Ta có bảng xét dấu:
Vậy f(x) > 0 khi x ∈
f(x) < 0 khi x ∈
f(x) = 0 khi
Ví dụ 2. Xét dấu các biểu thức sau:
a) f(x) = x3 + 3x2 – 6x – 8;
b) f(x) = (3x – 5)(x2 – 4)( –2x2 + x + 3);
c)
Hướng dẫn giải:
a) Ta có: f(x) = x3 + 3x2 – 6x – 8 = (x – 2)(x2 + 5x + 4)
f(x) = 0 ⇔ (x – 2)(x2 + 5x + 4) = 0
⦁ x – 2 = 0 ⇔ x = 2.
⦁ x2 + 5x + 4 = 0 ⇔ x = –4 hoặc x = –1.
Lập bảng xét dấu:
Vậy f(x) > 0 khi x ∈ (–4; –1) ∪ (2; +∞);
f(x) < 0 khi x ∈ (–∞; –4) ∪ (–1; 2);
f(x) = 0 khi x ∈ {–4; –1; 2}.
b) f(x) = (3x – 5)(x2 – 4)( –2x2 + x + 3)
Ta có:
3x – 5 = 0 ⇔ x =
x2 – 4 = 0 ⇔ x = –2 hoặc x = 2;
–2x2 + x + 3 = 0 ⇔ x = –1 hoặc
Bảng xét dấu:
Vậy f(x) > 0 khi
f(x) < 0 khi
f(x) = 0 khi
c) Ta có
x – 1 = 0 ⇔ x = 1
–x2 + x + 6 = 0 ⇔ x = –2 hoặc x = 3.
–x2 + 3x + 4 = 0 ⇔ x = –1 hoặc x = 4.
Bảng xét dấu:
Vậy f(x) < 0 khi x ∈ (–∞; –2) ∪ (–1; 1) ∪ (3; 4);
f(x) > 0 khi x ∈ (–2; –1) ∪ (1; 3) ∪ (4; +∞);
f(x) = 0 khi x ∈ {–2; 1; 3}.
3. Bài tập tự luyện
Bài 1. Cho f(x) = ax2 + bx + c (a ≠ 0) và Δ = b2 – 4ac. Dấu của Δ khi f(x) luôn cùng dấu với hệ số a với mọi x ∈ ℝ là
A. Δ < 0;
B. Δ = 0;
C. Δ > 0;
D. Δ ≥ 0.
Bài 2. Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0). Mệnh đề nào sau đây đúng?
A. Nếu Δ > 0 thì f(x) luôn cùng dấu với hệ số a, với mọi x ∈ ℝ;
B. Nếu Δ < 0 thì f(x) luôn trái dấu với hệ số a, với mọi x ∈ ℝ;
C. Nếu Δ = 0 thì f(x) luôn cùng dấu với hệ số a, với mọi
D. Nếu Δ < 0 thì f(x) luôn cùng dấu với hệ số b, với mọi x ∈ ℝ.
Bài 3. Cho tam thức f(x) = ax2 + bx + c (a ≠ 0) và Δ = b2 – 4ac. Ta có f(x) ≤ 0 với mọi x ∈ ℝ khi và chỉ khi
A. ;
B. ;
C. ;
D. .
Bài 4. Cho tam thức f(x) = x2 – 8x + 16. Khẳng định nào sau đây là đúng?
A. Phương trình f(x) = 0 vô nghiệm;
B. f(x) > 0 với mọi x ∈ ℝ ;
C. f(x) ≥ 0 với mọi x ∈ ℝ;
D. f(x) < 0 khi x < 4.
Bài 5. Cho f(x) = ax2 + bx + c (a ≠ 0) có đồ thị đi qua ba điểm (0; 1); (1; –2); (3; 0). Kết luận nào sau đây đúng?
A. f(x) âm trong khoảng ;
B. f(x) âm trong khoảng ;
C. f(x) âm trong khoảng (3; +∞);
D. f(x) dương trong khoảng .
Bài 6. Cho tam thức bậc hai f(x) = –2x2 + 8x – 8. Trong các mệnh đề sau, mệnh đề nào đúng?
A. f(x) < 0 với mọi x ∈ ℝ;
B. f(x) ≥ 0 với mọi x ∈ ℝ;
C. f(x) ≤ 0 với mọi x ∈ ℝ;
D. f(x) > 0 với mọi x ∈ ℝ.
Bài 7. Với x thuộc tập hợp nào dưới đây thì tam thức bậc hai f(x) = x2 – 6x + 8 không dương?
A. (–∞; 2) ∪ (4; +∞);
B. (–∞; 2] ∪ [4; +∞);
C. [2; 4];
D. (2; 4).
Bài 8. Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ.
Đặt ∆ = b2 – 4ac. Chọn khẳng định đúng:
A. a > 0, Δ > 0;
B. a < 0, Δ < 0;
C. a > 0, Δ = 0;
D. a < 0, Δ = 0.
Bài 9. Tam thức nào sau đây luôn dương với mọi giá trị của x?
A. f(x) = x2 – 10x + 2;
B. f(x) = x2 – 2x + 1;
C. f(x) = x2 – 2x + 10;
D. f(x) = –x2 + 2x + 10.
Bài 10. Số giá trị nguyên của x để tam thức f(x) = 2x2 – 7x – 9 nhận giá trị âm là
A. 3;
B. 4;
C. 5;
D. 6.
Xem thêm các dạng bài tập Toán 10 hay, chi tiết khác:
Bài toán chứa tham số liên quan đến dấu của tam thức bậc hai
Ứng dụng tam thức bậc hai, bất phương trình bậc hai vào các bài toán thực tế
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều