Lý thuyết Dấu hiệu chia hết cho 3, cho 9 hay, chi tiết
A. Lý thuyết
1. Nhận xét mở đầu
Nhận xét: Mọi số đều được viết dưới dạng tổng các chữ số của nó cộng với một số chia hết cho 9.
Ví dụ:
Ta có: 378 = 3.100 + 7.10 + 8 = 3.(99 + 1) + 7.(9 + 1) + 8
= 3.99 + 3 + 7.9 + 7 + 8
= (3 + 7 + 8) + (3.11.9 + 7.9)
= (tổng các chữ số) + (số chia hết cho 9)
2. Dấu hiệu chia hết cho 9
Dấu hiệu: Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và chỉ những số đó chia hết cho 9.
Ví dụ:
+ Số 792 có tổng các chữ số là 7 + 9 + 2 = 18 chia hết cho 9 thì số 792 chia hết cho 9.
+ Số 108 có tổng các chữ số là 1 + 0 + 8 = 9 chia hết cho 9 thì số 108 chia hết cho 9.
3. Dấu hiệu chia hết cho 3
Dấu hiệu: Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó chia hết cho 3.
Ví dụ:
+ Số 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 thì số 102 chia hết cho 3.
+ Số 321 có tổng các chữ số là 3 + 2 + 1 = 6 chia hết cho 3 thì số 321 chia hết cho 3.
B. Bài tập
Câu 1: Chứng minh rằng tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3.
Hướng dẫn giải:
Gọi 3 số tự nhiên liên tiếp là n; n + 1; n + 2
Tích của ba số tự nhiên liên tiếp là n(n + 1)(n + 2)
Mọi số tự nhiên khi chia cho 3 có thể nhận số dư là 0, 1, 2.
+ Nếu r = 0 thì n chia hết cho 3 ⇒ n(n + 1)(n + 2) chia hết cho 3.
+ Nếu r = 1 thì n có dạng n = 3k + 1 (k ∈ N)
⇒ n + 2 = 3k + 1 + 2 = 3(k + 1) chia hết cho 3.
⇒ n(n + 1)(n + 2) chia hết cho 3.
+ Nếu r = 2 thì n có dạng n = 3k + 2 (k ∈ N)
⇒ n + 1 = 3k + 2 + 1 = 3(k + 1) chia hết cho 3.
⇒ n(n + 1)(n + 2) chia hết cho 3.
Vậy tích của ba số tự nhiên liên tiếp chia hết cho 3.
Câu 2: Cho các số: 3564; 4352; 6531; 6570; 1248.
a) Viết tập hợp A các số chia hết cho 3 trong các số trên.
b) Viết tập hợp B các số chia hết cho 9 trong các số trên.
c) Dùng kí hiệu ⊂ để thể hiện quan hệ giữa hai tập hợp A và B.
Hướng dẫn giải:
a) Ta có: A = {3564; 6531; 6570; 1248}
b) Ta có: B = {3564; 6570}
c) Ta có B ⊂ A
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 6 có đáp án chi tiết hay khác:
- Lý thuyết Dấu hiệu chia hết cho 2, cho 5
- Bài tập Dấu hiệu chia hết cho 2, cho 5
- Bài tập Dấu hiệu chia hết cho 3, cho 9
- Lý thuyết Ước và bội
- Bài tập Ước và bội
Xem thêm các loạt bài Để học tốt Toán lớp 6 hay khác:
Ngân hàng trắc nghiệm lớp 6 tại khoahoc.vietjack.com
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k9: fb.com/groups/hoctap2k9/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết - Bài tập Toán lớp 6 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Số học 6 và Hình học 6.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn Văn 6
- Soạn Văn 6 (bản ngắn nhất)
- Soạn Văn 6 (siêu ngắn)
- Văn mẫu lớp 6
- Đề kiểm tra Ngữ Văn 6 (có đáp án)
- Giải vở bài tập Ngữ văn 6
- Giải bài tập Toán 6
- Giải SBT Toán 6
- Đề kiểm tra Toán 6 (200 đề)
- Giải bài tập Vật lý 6
- Giải SBT Vật Lí 6
- Giải bài tập Sinh học 6
- Giải bài tập Sinh 6 (ngắn nhất)
- Giải vở bài tập Sinh học 6
- Bài tập trắc nghiệm Sinh học 6
- Giải bài tập Địa Lí 6
- Giải bài tập Địa Lí 6 (ngắn nhất)
- Giải sách bài tập Địa Lí 6
- Giải Tập bản đồ và bài tập thực hành Địa Lí 6
- Giải bài tập Tiếng anh 6
- Giải SBT Tiếng Anh 6
- Giải bài tập Tiếng anh 6 thí điểm
- Giải SBT Tiếng Anh 6 mới
- Giải bài tập Lịch sử 6
- Giải bài tập Lịch sử 6 (ngắn nhất)
- Giải vở bài tập Lịch sử 6
- Giải tập bản đồ Lịch sử 6
- Giải bài tập GDCD 6
- Giải bài tập GDCD 6 (ngắn nhất)
- Giải sách bài tập GDCD 6
- Giải bài tập tình huống GDCD 6
- Giải BT Tin học 6
- Giải BT Công nghệ 6
Nhóm học tập 2k9