Lý thuyết và Trắc nghiệm Toán 6 Bài 12: Dấu hiệu chia hết cho 3, cho 9 có đáp án

Lý thuyết và Trắc nghiệm Toán 6 Bài 12: Dấu hiệu chia hết cho 3, cho 9

A. Lý thuyết

1. Nhận xét mở đầu

Nhận xét: Mọi số đều được viết dưới dạng tổng các chữ số của nó cộng với một số chia hết cho 9.

Ví dụ:

Ta có: 378 = 3.100 + 7.10 + 8 = 3.(99 + 1) + 7.(9 + 1) + 8

= 3.99 + 3 + 7.9 + 7 + 8

= (3 + 7 + 8) + (3.11.9 + 7.9)

= (tổng các chữ số) + (số chia hết cho 9)

2. Dấu hiệu chia hết cho 9

Dấu hiệu: Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và chỉ những số đó chia hết cho 9.

Ví dụ:

   + Số 792 có tổng các chữ số là 7 + 9 + 2 = 18 chia hết cho 9 thì số 792 chia hết cho 9.

   + Số 108 có tổng các chữ số là 1 + 0 + 8 = 10 chia hết cho 9 thì số 108 chia hết cho 9.

3. Dấu hiệu chia hết cho 3

Dấu hiệu: Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó chia hết cho 3.

Ví dụ:

   + Số 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 thì số 102 chia hết cho 3.

   + Số 321 có tổng các chữ số là 3 + 2 + 1 = 6 chia hết cho 6 thì số 321 chia hết cho 3.

B. Trắc nghiệm & Tự luận

I. Câu hỏi trắc nghiệm

Câu 1: Trong các số 333; 354; 360; 2457; 1617; 152, số nào chia hết cho 9

A. 333     B. 360     C. 2457     D. Cả A, B, C đúng

     + Số 333 có tổng các chữ số là 3 + 3 + 3 = 9 ⋮ 9 nên 333 chia hết cho 9.

     + Số 360 có tổng các chữ số là 3 + 6 + 0 = 9 ⋮ 9 nên 360 chia hết cho 9.

     + Số 2475 có tổng các chữ số là 2 + 4 + 7 + 5 = 18 ⋮ 9 nên 2475 chia hết cho 9.

Chọn đáp án D.

Câu 2: Cho 5 số 0;1;3;6;7. Có bao nhiêu số tự nhiên có ba chữ số và chia hết cho 3 được lập từ các số trên mà các chữ số không lập lại.

A. 1     B. 4     C. 3     D. 2

Các số tự nhiên có ba chữ số vào chia hết cho 3 được lập từ các số trên mà các chữ số chữ lặp lại là: 360; 306; 630; 603

Chọn đáp án B.

Câu 3: Cho A = a785b−−−−−−−−−−−−. Tìm tổng các chữ số a và b sao cho A chia cho 9 dư 2.

A. (a + b) ∈ {9; 18}     B. (a + b) ∈ {0; 9; 18}

C. (a + b) ∈ {1; 2; 3}     D. (a + b) ∈ {4; 5; 6}

Ta có a, b ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9} và a ≠ 0

A chia cho 9 dư 2 ⇒ a + 7 + 8 + 5 + b = a + b + 20 chia cho 9 dư 2 hay (a + b + 18) ⋮ 9

Mà 18 ⋮ 9 ⇒ (a + b) ⋮ 9 ⇒ (a + b) ∈ {9; 18}

Chọn đáp án A.

Câu 4: Tìm các số tự nhiên x, y biết rằng 23x5y−−−−−−−−−−−− chia hết cho 2, 5 và 9

A. x = 0; y = 6     B. x = 6; y = 0

C. x = 8; y = 0     D. x = 0; y = 8

Theo giả thiết ta có 23x5y−−−−−−−−−−−− chia hết cho 2 và 5 nên y = 0, ta được số 23x50−−−−−−−−−−−−

23x50−−−−−−−−−−−− nên 2 + 3 + x + 5 chia hết cho 9 hay (10 + x) ⋮ 9

Theo đáp án ta có x = 8 thỏa mãn yêu cầu bài.

Chọn đáp án C.

Câu 5: Chọn câu trả lời đúng. Trong các số 2055; 6430; 5041; 2341; 2305

A. Các số chia hết cho 5 là 2055; 6430; 2341

B. Các số chia hết cho 3 là 2055 và 6430.

C. Các số chia hết cho 5 là 2055; 6430; 2305.

D. Không có số nào chia hết cho 3.

Các số chia hết cho 5 là 2055; 6430; 2305.

Chọn đáp án C.

II. Bài tập tự luận

Câu 1: Chứng mình rằng tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3.

Gọi 3 số tự nhiên liên tiếp là n; n + 1; n + 2

Tích của ba số tự nhiên liên tiếp là n(n + 1)(n + 2)

Mọi số tự nhiên khi chia cho 3 có thể nhận số dư là 0, 1, 2.

     + Nếu r = 0 thì n chia hết cho 3 ⇒ n(n + 1)(n + 2) chia hết cho 3.

     + Nếu r = 1 thì n có dạng n = 3k + 1 (k ∈ N)

     ⇒ n + 2 = 3k + 1 + 2 = 3(k + 1) chia hết cho 3.

     ⇒ n(n + 1)(n + 2) chia hết cho 3.

     + Nếu r = 2 thì n có dạng n = 3k + 2 (k ∈ N)

     ⇒ n + 1 = 3k + 2 + 1 = 3(k + 1) chia hết cho 3.

     ⇒ n(n + 1)(n + 2) chia hết cho 3.

Vậy tích của ba số tự nhiên liên tiếp chia hết cho 3.

Câu 2: Cho các số: 3564; 4352; 6531; 6570; 1248.

a) Viết tập hợp A các số chia hết cho 3 trong các số trên.

b) Viết tập hợp B các số chia hết cho 9 trong các số trên.

c) Dùng kí hiệu ⊂ để thể hiện quan hệ giữa hai tập hợp A và B.

a) Ta có: A = {3564; 6531; 6570; 1248}

b) Ta có: B = {3564; 6570}

c) Ta có B ⊂ A

Các bài Tổng hợp Lý thuyết và Bài tập Toán lớp 6 có đáp án và lời giải chi tiết khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Lý thuyết - Bài tập Toán lớp 6 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Số học 6 và Hình học 6.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.