Lý thuyết Phương trình chứa dấu giá trị tuyệt đối lớp 8 (hay, chi tiết)

Bài viết Lý thuyết Phương trình chứa dấu giá trị tuyệt đối lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Phương trình chứa dấu giá trị tuyệt đối.

Lý thuyết Phương trình chứa dấu giá trị tuyệt đối

Bài giảng: Bài 5: Phương trình chứa dấu giá trị tuyệt đối - Cô Vương Thị Hạnh (Giáo viên VietJack)

A. Lý thuyết

1. Nhắc lại về giá trị tuyệt đối

Quảng cáo

Giá trị tuyệt đối của số a, được kí hiệu là | a |, ta định nghĩa như sau:

Lý thuyết Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Ví dụ: Bỏ dấu giá trị tuyệt đối và rút gọn biểu thức sau:

a) A = | x - 1 | + 3 - x khi x ≥ 1.

b) B = 3x - 1 + | - 2x | khi x < 0.

Lời giải:

a) Khi x ≥ 1 ta có x - 1 ≥ 0 nên | x - 1 | = x - 1

Do đó A = | x - 1 | + 3 - x = x - 1 + 3 - x = 2.

b) Khi x < 0 ta có - 2x > 0 nên | - 2x | = - 2x

Do đó B = 3x - 1 + | - 2x | = 3x - 1 - 2x = x - 1.

2. Giải một số phương trình chứa dấu giá trị tuyệt đối

Quảng cáo

a) Phương pháp chung

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối

Bước 2: Rút gọn hai vế của phương trình, giải phương trình

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét

Bước 4: Kết luận nghiệm

b) Một số dạng cơ bản

DạngLý thuyết Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

hoặcLý thuyết Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Dạng | A | = | B | ⇔ A = B hay A = - B.

Dạng phương trình có chứa nhiều dấu giá trị tuyệt đối

+ Xét dấu các biểu thức chứa ẩn nằm trong dấu GTTĐ.

+ Chia trục số thành nhiều khoảng sao cho trong mỗi khoảng, các biểu thức nói trên có dấu xác định.

+ Xét từng khoảng, khử các dấu GTTĐ, rồi giải PT tương ứng trong trường hợp đó.

+ Kết hợp các trường hợp đã xét, suy ra số nghiệm của PT đã cho.

Ví dụ: Giải bất phương trình | 4x | = 3x + 1

Quảng cáo

Lời giải:

Ta có | 4x | = 3x + 1

+ Với x ≥ 0 ta có | 4x | = 4x

Khi đó phương trình trở thành 4x = 3x + 1

⇔ 4x - 3x = 1 ⇔ x = 1.

Giá trị x = 1 thỏa mãn điều kiện x ≥ 0, nên 1 là một nghiệm của phương trình đã cho

+ Với x < 0 ta có | 4x | = - 4x

Khi đó phương trình trở thành - 4x = 3x + 1

⇔ - 4x - 3x = 1 ⇔ - 7x = 1 ⇔ x = - 1/7.

Giá trị x = - 1/7 thỏa mãn điều kiện x < 0, nên - 1/7 là một nghiệm cần tìm.

Vậy phương trình đã cho có tập nghiệm là S = { - 1/7;1 }

B. Bài tập tự luyện

Bài 1: Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức sau:

Quảng cáo

a) A = 3x + 2 + | 5x | với x > 0.

b) A = | 4x | - 2x + 12 với x < 0.

c) A = | x - 4 | - x + 1 với x < 4

Lời giải:

a) Với x > 0 ⇒ | 5x | = 5x

Khi đó ta có: A = 3x + 2 + | 5x | = 3x + 2 + 5x = 8x + 2

Vậy A = 8x + 2.

b) Ta có: x < 0 ⇒ | 4x | = - 4x

Khi đó ta có: A = | 4x | - 2x + 12 = - 4x - 2x + 12 = 12 - 6x

Vậy A = 12 - 6x.

c) Ta có: x < 4 ⇒ | x - 4 | = 4 - x

Khi đó ta có: A = | x - 4 | - x + 1 = 4 - x - x + 1 = 5 - 2x.

Vậy A = 5 - 2x

Bài 2: Giải các phương trình sau:

a) | 2x | = x - 6

b) | - 5x | - 16 = 3x

c) | 4x | = 2x + 12

d) | x + 3 | = 3x - 1

Lời giải:

a) Ta có: | 2x | = x - 6

+ Với x ≥ 0, phương trình tương đương: 2x = x - 6 ⇔ x = - 6.

Không thỏa mãn điều kiện x ≥ 0.

+ Với x < 0, phương trình tương đương: - 2x = x - 6 ⇔ - 3x = - 6 ⇔ x = 2.

Không thỏa mãn điều kiện x < 0.

Vậy phương trình đã cho vô nghiệm.

b) Ta có: | - 5x | - 16 = 3x

+ Với x ≥ 0, phương trình tương đương: 5x - 16 = 3x ⇔ 2x = 16 ⇔ x = 8

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: - 5x - 16 = 3x ⇔ 8x = - 16 ⇔ x = - 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { - 2;8 }

c) Ta có: | 4x | = 2x + 12

+ Với x ≥ 0, phương trình tương đương: 4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: - 4x = 2x + 12 ⇔ - 6x = 12 ⇔ x = - 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { - 2;6 }

d) Ta có: | x + 3 | = 3x - 1

+ Với x ≥ - 3, phương trình tương đương: x + 3 = 3x + 1 ⇔ - 2x = - 2 ⇔ x = 1.

Thỏa mãn điều kiện x ≥ - 3

+ Với x < - 3, phương trình tương đương: - x - 3 = 3x + 1 ⇔ - 4x = 4 ⇔ x = - 1

Không thỏa mãn điều kiện x < - 3

Vậy phương trình đã cho có tập nghiệm là S = { 1 }

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 sách mới các môn học
Tài liệu giáo viên