Lý thuyết: Phương trình chứa dấu giá trị tuyệt đối hay, chi tiết

A. Lý thuyết

1. Nhắc lại về giá trị tuyệt đối

Giá trị tuyệt đối của số a, được kí hiệu là | a |, ta định nghĩa như sau:

Lý thuyết: Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Ví dụ: Bỏ dấu giá trị tuyệt đối và rút gọn biểu thức sau:

a) A = | x - 1 | + 3 - x khi x ≥ 1.

b) B = 3x - 1 + | - 2x | khi x < 0.

Hướng dẫn:

a) Khi x ≥ 1 ta có x - 1 ≥ 0 nên | x - 1 | = x - 1

Do đó A = | x - 1 | + 3 - x = x - 1 + 3 - x = 2.

b) Khi x < 0 ta có - 2x > 0 nên | - 2x | = - 2x

Do đó B = 3x - 1 + | - 2x | = 3x - 1 - 2x = x - 1.

2. Giải một số phương trình chứa dấu giá trị tuyệt đối

a) Phương pháp chung

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối

Bước 2: Giải các bất phương trình không có dấu giá trị tuyệt đối

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét

Bước 4: Kết luận nghiệm

b) Một số dạng cơ bản

DạngLý thuyết: Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

hoặcLý thuyết: Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Dạng | A | = | B | ⇔ A = B hay A = - B.

Dạng phương trình có chứa nhiều dấu giá trị tuyệt đối

+ Xét dấu các biểu thức chứa ẩn nằm trong dấu GTTĐ.

+ Chia trục số thành nhiều khoảng sao cho trong mỗi khoảng, các biểu thức nói trên có dấu xác định.

+ Xét từng khoảng, khử các dấu GTTĐ, rồi giải PT tương ứng trong trường hợp đó.

+ Kết hợp các trường hợp đã xét, suy ra số nghiệm của PT đã cho.

Ví dụ: Giải bất phương trình | 4x | = 3x + 1

Hướng dẫn:

Ta có | 4x | = 3x + 1

+ Với x ≥ 0 ta có | 4x | = 4x

Khi đó phương trình trở thành 4x = 3x + 1

⇔ 4x - 3x = 1 ⇔ x = 1.

Giá trị x = 1 thỏa mãn điều kiện x ≥ 0, nên 1 là một nghiệm của phương trình đã cho

+ Với x < 0 ta có | 4x | = - 4x

Khi đó phương trình trở thành - 4x = 3x + 1

⇔ - 4x - 3x = 1 ⇔ - 4x = 1 ⇔ x = - 1/7.

Giá trị x = - 1/7 thỏa mãn điều kiện x < 0, nên - 1/7 là một nghiệm cần tìm.

Vậy phương trình đã cho có tập nghiệm là S = { - 1/7;1 }

B. Bài tập tự luyện

Bài 1: Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức sau:

a) A = 3x + 2 + | 5x | với x > 0.

b) A = | 4x | - 2x + 12 với x < 0.

c) A = | x - 4 | - x + 1 với x < 4

Hướng dẫn:

a) Với x > 0 ⇒ | 5x | = 5x

Khi đó ta có: A = 3x + 2 + | 5x | = 3x + 2 + 5x = 8x + 2

Vậy A = 8x + 2.

b) Ta có: x < 0 ⇒ | 4x | = - 4x

Khi đó ta có: A = | 4x | - 2x + 12 = - 4x - 2x + 12 = 12 - 6x

Vậy A = 12 - 6x.

c) Ta có: x < 4 ⇒ | x - 4 | = 4 - x

Khi đó ta có: A = | x - 4 | - x + 1 = 4 - x - x + 1 = 5 - 2x.

Vậy A = 5 - 2x

Bài 2: Giải các phương trình sau:

a) | 2x | = x - 6

b) | - 5x | - 16 = 3x

c) | 4x | = 2x + 12

d) | x + 3 | = 3x - 1

Hướng dẫn:

a) Ta có: | 2x | = x - 6

+ Với x ≥ 0, phương trình tương đương: 2x = x - 6 ⇔ x = - 6.

Không thỏa mãn điều kiện x ≥ 0.

+ Với x < 0, phương trình tương đương: - 2x = x - 6 ⇔ - 3x = - 6 ⇔ x = 2.

Không thỏa mãn điều kiện x < 0.

Vậy phương trình đã cho vô nghiệm.

b) Ta có: | - 5x | - 16 = 3x

+ Với x ≥ 0, phương trình tương đương: 5x - 16 = 3x ⇔ 2x = 16 ⇔ x = 8

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: - 5x - 16 = 3x ⇔ 8x = - 16 ⇔ x = - 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { - 2;8 }

c) Ta có: | 4x | = 2x + 12

+ Với x ≥ 0, phương trình tương đương: 4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: - 4x = 2x + 12 ⇔ - 6x = 12 ⇔ x = - 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { - 2;6 }

d) Ta có: | x + 3 | = 3x - 1

+ Với x ≥ - 3, phương trình tương đương: x + 3 = 3x + 1 ⇔ - 2x = - 2 ⇔ x = 1.

Thỏa mãn điều kiện x ≥ - 3

+ Với x < - 3, phương trình tương đương: - x - 3 = 3x + 1 ⇔ - 4x = 4 ⇔ x = - 1

Không thỏa mã điều kiện x < - 3

Vậy phương trình đã cho có tập nghiệm là S = { 1 }

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

300 BÀI GIẢNG GIÚP CON HỌC TỐT LỚP 8 CHỈ 399K

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa lớp 8 ôn hè. Đăng ký ngay!

Học tốt toán 8 - Thầy Phan Toàn

4.5 (243)

799,000đs

599,000 VNĐ

Tiếng Anh lớp 8 - Cô Hoài Thu

4.5 (243)

799,000đ

599,000 VNĐ

Học tốt Văn 8 - Cô Mỹ Linh

4.5 (243)

799,000đ

599,000 VNĐ

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.