Lý thuyết Phân tích đa thức thành nhân tử lớp 8 (hay, chi tiết)
Bài viết Lý thuyết Phân tích đa thức thành nhân tử lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Phân tích đa thức thành nhân tử.
Lý thuyết Phân tích đa thức thành nhân tử lớp 8 (hay, chi tiết)
Bài giảng: Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
A. Lý thuyết
I. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG
1. Khái niệm về phương pháp đặt nhân tử chung
Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.
Ứng dụng: Việc phân tích đa thức thành nhân tử giúp ta có thể thu gọc biểu thức, tính nhanh và giải phương trình dễ dàng.
2. Phương pháp đặt nhân tử chung
+ Khi tất cả các số hạng của đa thức có một thừa số chung, ta đặt thừa số chung đó ra ngoài dấu ngoặc () để làm nhân tử chung.
+ Các số hạng bên trong dấu () có được bằng cách lấy số hạng của đa thức chia cho nhân tử chung.
Chú ý: Nhiều khi để làm xuất hiện nhân tử chung ta cần đổi dấu các hạng tử.
( lưu ý tính chất: A = -(-A)).
3. Ví dụ áp dụng
Ví dụ: Phân tích đa thức sau thành nhân tử
a, 4x2 - 6x
b, 9x4y3 + 3x2y4
Lời giải:
a) Ta có : 4x2 - 6x = 2x.2x - 3.2x = 2x( 2x - 3 ).
b) Ta có: 9x4y3 + 3x2y4 = 3x2y3.3x2 + 3x2y3y = 3x2y3(3x2 + 1)
II. PHÂN THÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC
1. Phương pháp dùng hằng đẳng thức
+ Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử.
+ Cần chú ý đến việc vận dụng linh hoạt các hằng đẳng thức để phù hợp với các nhân tử.
2. Ví dụ áp dụng
Ví dụ: Phân tích đa thức sau thành nhân tử
a, 9x2 - 1
b, x2 + 6x + 9.
Lời giải:
a) Ta có: 9x2 - 1 = ( 3x )2 - 12 = ( 3x - 1 )( 3x + 1 )
(áp dụng hằng đẳng thức A2 - B2 = ( A - B )( A + B ) )
b) Ta có: x2 + 6x + 9 = x2 + 2.x.3 + 32 = ( x + 3 )2.
(áp dụng hằng đẳng thức ( A + B )2 = A2 + 2AB + B2 )
III. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP NHÓM HẠNG TỬ
1. Phương pháp nhóm hạng tử
+ Ta vận dụng phương pháp nhóm hạng tử khi không thể phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung hay bằng phương pháp dùng hằng đẳng thức.
+ Ta nhận xét để tìm cách nhóm hạng tử một cách thích hợp (có thể giao hoán và kết hợp các hạng tử để nhóm) sao cho sau khi nhóm, từng nhóm đa thức có thế phân tích được thành nhân tử bằng phương pháp đặt nhân tử chung, bằng phương pháp dùng hằng đẳng thức. Khi đó đa thức mới phải xuất hiện nhân tử chung.
+ Ta áp dụng phương pháp đặt thành nhân tử chung để phân tích đa thức đã cho thành nhân tử.
2. Chú ý
+ Với một đa thức, có thể có nhiều cách nhóm các hạng tử một cách thích hợp.
+ Khi phân tích đa thức thành nhân tử ta phải phân tích đến cuối cùng (không còn phân tích được nữa).
+ Dù phân tích bằng cách nào thì kết quả cũng là duy nhất.
+ Khi nhóm các hạng tử, phải chú ý đến dấu của đa thức.
3. Ví dụ áp dụng
Ví dụ: Phân tích các đa thức sau thành nhân tử.
a, x2 - 2xy + xy2 - 2y3.
b, x2 + 4x - y2 + 4.
Lời giải:
a) Ta có x2 - 2xy + xy2 - 2y3 = ( x2 - 2xy ) + ( xy2 - 2y3 ) = x( x - 2y ) + y2( x - 2y )
= ( x + y2 )( x - 2y )
b) Ta có x2 + 4x - y2 + 4 = ( x2 + 4x + 4 ) - y2 = ( x + 2 )2 - y2 = ( x + 2 - y )( x + y + 2 )
IV. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHỐI HỢP NHIỀU PHƯƠNG PHÁP
1. Phương pháp thực hiện
Ta tìm hướng giải bằng cách đọc kỹ đề bài và rút ra nhận xét để vận dụng các phương pháp đã biết:
+ Đặt nhân tử chung
+ Dùng hằng đẳng thức
+ Nhóm nhiều hạng tử và phối hợp chúng
⇒ Để phân tích đa thức thành nhân tử.
2. Chú ý
Nếu các hạng tử của đa thức có nhân tử chung thì ta nên đặt nhân tử chung ra ngoài dấu ngoặc để đa thức trong ngoặc đơn giản hơn rồi mới tiếp tục phân tích đến kết quả cuối cùng.
3. Ví dụ áp dụng
Ví dụ: Phân tích đa thức thành nhân tử
x2 + 4x - 2xy - 4y + y2.
2xy - x2 - y2 + 16.
Lời giải:
a) Ta có x2 + 4x - 2xy - 4y + y2 = ( x2 - 2xy + y2 ) + ( 4x - 4y ) = ( x - y )2 + 4( x - y )
= ( x - y )( x - y + 4 ).
b) Ta có: 2xy - x2 - y2 + 16 = 16 - ( x2 - 2xy + y2 ) = 16 - ( x - y )2
= ( 4 - x + y )( 4 + x - y ).
B. Bài tập tự luyện
Bài 1: Phân tích các đa thức sau thành nhân tử
a, ( ab - 1 )2 + ( a + b )2
b, x3 + 2x2 + 2x + 1
c, x2 - 2x - 4y2 - 4y
Lời giải:
a) Ta có ( ab - 1 )2 + ( a + b )2 = a2b2 - 2ab + 1 + a2 + 2ab + b2
= a2b2 + a2 + b2 + 1 = ( a2b2 + a2 ) + ( b2 + 1 )
= a2( b2 + 1 ) + ( b2 + 1 ) = ( a2 + 1 )( b2 + 1 )
b) Ta có x3 + 2x2 + 2x + 1 = ( x3 + 1 ) + ( 2x2 + 2x )
= ( x + 1 )( x2 - x + 1 ) + 2x( x + 1 ) = ( x + 1 )( x2 + x + 1 )
c) Ta có x2 - 2x - 4y2 - 4y = ( x2 - 4y2 ) - ( 2x + 4y )
= ( x - 2y )( x + 2y ) - 2( x + 2y )
= ( x + 2y )( x - 2y - 2 ).
Bài 2: Tính giá trị của biểu thức sau A = x6 - 2x4 + x3 + x2 - x, biết x3 - x = 6.
Lời giải:
Ta có: A = x6 - 2x4 + x3 + x2 - x = ( x6 - 2x4 + x2 ) + ( x3 - x )
= ( x3 - x )2 + ( x3 - x )
Với x3 - x = 6 = ( x3 - x )2 + ( x3 - x ), ta có A = 62 + 6 = 36 + 6 = 42.
Vậy A = 42.
Bài 3: Tìm x biết
Lời giải:
Bài 4. Phân tích các đa thức sau thành nhân tử:
a) A = x4 – 11x3 + 26x2 – 22x + 48;
b) B = x5 + 3x4 + x3 − 11x2 − 30x – 20.
Lời giải:
a) A = x4 – 8x3 – 3x3 + 24x2 + 2x2 – 16x – 6x + 48
= (x – 8)(x3 – 3x2 + 2x – 6)
= (x – 8)(x – 3)(x2 + 2).
b) B = x5 + 3x4 + x3 − 11x2 − 30x – 20
= x5 – 5x3 + 3x4 – 15x2 + 6x3 – 30x + 4x2 – 20
= (x2 − 5)(x3 + 3x2 + 6x + 4)
= (x2 − 5)(x3 + 2x2 + 4x + x2 + 2x + 4)
= (x2 − 5)(x2 + 2x + 4) (x + 1).
Bài 5. Phân tích các đa thức sau thành nhân tử.
a) A = x4 + 5x3 + 7x2 + 5x + 6
b) B = x3 − 11x2 + 10x
Lời giải:
a) A = x4 + 5x3 + 7x2 + 5x + 6
= x4 + 3x3 + 2x3 + 6x2 + x2 + 3x + 2x + 6
= (x + 3)(x3 + 2x2 + x + 2)
= (x + 3)(x3 + x + 2x2 + 2)
= (x + 3)(x2 + 1)(x + 2).
b) B = x3 − 11x2 + 10x
= x(x2 − 11x+ 10)
= x(x2 – x – 10x + 10)
= x(x – 1)(x – 10).
Bài 6. Tìm x, biết:
a) x3 − 5x2 − 9x + 10 = –35
b) x5 − 4x3 + 5x2 – 20 = 0
Lời giải:
a) x3 − 5x2 − 9x + 10 = –35
x3 − 5x2 − 9x + 45 = 0
x(x2 – 9) – 5(x2 – 9) = 0
(x – 5)(x2 – 9) = 0
(x – 5)(x – 3)(x + 3) = 0
x – 5 = 0 hoặc x – 3 = 0 hoặc x + 3 = 0
x = 5 hoặc x = 3 hoặc x = –3
Vậy x ∈ {–3; 3; 5}.
b) x5 − 4x3 + 5x2 – 20 = 0
x3(x2 – 4) + 5(x2 – 4) = 0
(x2 – 4)(x3 + 5) = 0
(x + 2)(x – 2)(x3 + 5) = 0
x + 2 = 0 hoặc x – 2 = 0 hoặc x3 + 5 = 0
x = 2 hoặc x = – 2 hoặc x = .
Vậy .
Bài 7. Cho P = x2 + 11x + 24. Tìm x để P chia hết cho 4.
Lời giải:
P = x2 + 11x + 24
= x2 + 3x + 8x + 24
= (x + 3)(x + 8)
Nhận thấy, (x + 3) và (x + 8) không cùng lúc chẵn.
Nên P ⁝ 4 khi và chỉ khi (x + 3) ⁝ 4 hoặc (x + 8) ⁝ 4.
• Trường hợp 1: x + 3 ⁝ 4 nên x = 4k + 1 (k ∈ ℤ).
• Trường hợp 2: x + 8 ⁝ 4 nên x = 4h (h ∈ ℤ).
Bài 8. Tìm x, biết: x4 + 10x3 + 35x2 + 50x + 24 = 0.
Lời giải:
x4 + 10x3 + 35x2 + 50x + 24 = 0
x4 + x3 + 9x3 + 9x2 + 26x2 + 26x + 24x + 24 = 0
(x + 1)(x3 + 9x2 + 26x + 24) = 0
(x + 1)( x3 + 2x2 + 7x2 + 14x + 12x + 24) = 0
(x + 1)(x + 2)(x2 + 7x + 12) = 0
(x + 1)(x + 2)(x2 + 3x + 4x + 12) = 0
(x + 1)(x + 2)(x + 3)(x + 4) = 0
Vậy x ∈ {–1; –2; –3; –4}.
Bài 9. Tìm nhân tử chung của các biểu thức:
a) A = ;
b) B = .
Bài 10. Cho biểu thức P = x4 + x3 + 2x + 2. Với giá trị nào của x thì P ⁝ 10?
Bài 11. Cho biểu thức P = x4 + 8x3 + 32x2 + 256x. Với giá trị nào của x thì P ⁝ 16?
Bài 12. Tìm x, biết: .
Bài 13. Tìm nhân tử chung của biểu thức: P = 2x4 − 11x3 − 7x2 + 51x + 45.
Bài giảng: Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung - Cô Vương Thị Hạnh (Giáo viên VietJack)
Bài giảng: Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức - Cô Vương Thị Hạnh (Giáo viên VietJack)
Bài giảng: Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử - Cô Vương Thị Hạnh (Giáo viên VietJack)
Bài giảng: Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp - Cô Vương Thị Hạnh (Giáo viên VietJack)
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:
- Bài tập Phân tích đa thức thành nhân tử
- Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
- Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
- Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
- Lý thuyết Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều