Cho tam giác ABC. Gọi D là trung điểm của AB

Giải vở thực hành Toán 7 Bài tập ôn tập cuối năm

Bài 8 trang 107 vở thực hành Toán lớp 7 Tập 2: Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.

a) Chứng minh rằng ∆ADM = ∆BDC. Từ đó suy ra AM = BC và AM // BC.

b) Gọi E là trung điểm của AC. Trên tia đối của tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng AN // BC.

c) Chứng minh rằng ba điểm M, A, N thẳng hàng và A là trung điểm của đoạn MN.

Quảng cáo

Lời giải:

Cho tam giác ABC. Gọi D là trung điểm của AB

a) ∆ADM và ∆BDC có

AD = DB (do D là trung điểm của AB)

ADM^=BDC^ (hai góc đối đỉnh)

DM = DC (giả thiết)

Nên ∆ADM = ∆BDC (c.g.c).

Suy ra AM = BC (hai cạnh tương ứng) và MAD^=CBD^ (hai góc tương ứng).

Mà hai góc này ở vị trí so le trong nên AM // BC (dấu hiệu nhận biết hai đường thẳng song song).

b) ∆AEN và ∆CEB có:

AE = CE (E là trung điểm của AC)

AEN^=CEB^ (hai góc đối đỉnh)

EN = EB (theo giả thiết)

Nên ∆AEN = ∆CEB (c.g.c).

Suy ra EAN^=ECB^ (hai góc tương ứng).

Mà hai góc này ở vị trí so le trong nên AN // BC (dấu hiệu nhận biết hai đường thẳng song song).

c) Ta có AM // BC (chứng minh trên),

   AN // BC (chứng minh trên) nên AM và AN trùng nhau (theo tiên đề Euclid).

Từ đó suy ra ba điểm M, A, N thẳng hàng.

Ta lại có AM = BC (chứng minh trên), AN = BC (chứng minh trên – do ∆AEN = ∆CEB),

do đó AM = AN.

Từ đó suy ra A là trung điểm của đoạn MN.

Quảng cáo

Xem thêm các bài giải vở thực hành Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải VTH Toán lớp 7 hay nhất, chi tiết được biên soạn bám sát sách Vở thực hành Toán 7 Tập 1, Tập 2 bộ sách Kết nối tri thức (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Kết nối tri thức khác
Tài liệu giáo viên