Bài 3 trang 20 Chuyên đề Toán 12 Chân trời sáng tạo

Giải Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm giải bài toán tối ưu - Chân trời sáng tạo

Bài 3 trang 20 Chuyên đề Toán 12: Người ta muốn thiết kế một lồng nuôi cá có bề mặt hình chữ nhật bao gồm phần mặt nước có diện tích bằng 54 m2 và phần đường đi xung quanh với kích thước (đơn vị: m) như Hình 8. Bề mặt của lồng có chiều dài và chiều rộng bằng bao nhiêu để diện tích phần đường đi là bé nhất?

Quảng cáo

Bài 3 trang 20 Chuyên đề Toán 12 Chân trời sáng tạo

Lời giải:

Từ hình vẽ, ta tính được kích thước hình chữ nhật phần mặt nước là a – 3 (m) và b – 2 (m). Từ đó suy ra a > 3 và b > 2.

Diện tích phần mặt nước là S1 = (a – 3)(b – 2) = 54 (m2)

Suy ra b=54a3+2(m).

Diện tích phần đường đi là S = ab – 54 = a54a3+254=54aa3+2a54(m2).

Xét hàm số Sa=54aa3+2a54 với a ∈ (3; + ∞).

Ta có S'a=2162a32;

          S'(a) = 0 2162a32=0a32=81a=123;+.

Bảng biến thiên:

Bài 3 trang 20 Chuyên đề Toán 12 Chân trời sáng tạo

Từ bảng biến thiên, ta có min3;+Sa=42, đạt được khi a = 12.

Với a = 12 thì ta có b=54123+2=8.

Vậy bề mặt của lồng có chiều dài và chiều rộng lần lượt là 12 m và 8 m thì diện tích phần đường đi là bé nhất.

Quảng cáo

Lời giải bài tập Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm giải bài toán tối ưu hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 sách mới các môn học