Khám phá trang 15 Chuyên đề Toán 12 Chân trời sáng tạo

Giải Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm giải bài toán tối ưu - Chân trời sáng tạo

Khám phá trang 15 Chuyên đề Toán 12: Người ta muốn sản xuất những chiếc thùng có dạng hình hộp chữ nhật không nắp, có đáy là hình vuông và thể tích chứa là 500 dm3 (Hình 1). Biết rằng chiều cao của thùng trong khoảng từ 3 dm đến 10 dm.

Quảng cáo

Khám phá trang 15 Chuyên đề Toán 12 Chân trời sáng tạo

a) Nếu gọi độ dài cạnh đáy của thùng là x (dm), chiều cao của thùng là h (dm) thì tổng diện tích các mặt của thùng, kí hiệu S, có thể được biểu thị bằng biểu thức nào?

b) Có thể biểu thị tổng diện tích S theo x không? Biến x nhận giá trị trong miền nào?

c) Với giá trị nào của x thì S có giá trị nhỏ nhất?

Lời giải:

a) Tổng diện tích các mặt của thùng là S = 4xh + x2 (dm2).

b) Thể tích của thùng là V = x2h = 500 (dm3).

Suy ra h=500x2(dm).

Vì 3 ≤ h ≤ 10 nên 3500x210, suy ra 52x10153

Khi đó, tổng diện tích các mặt của thùng là

S(x) = 2000x+x2 (dm2) với x52;10153.

c) Xét hàm số S(x) = 2000x+x2 (dm2) với x52;10153

Ta có S'(x) = 2000x2+2x;

Trên khoảng 52;10153, S'(x) = 0 ⇔ x = 10.

S52=2002+50; S(10) = 300; S10153=4015+5003.

Do đó, min52;10153Sx=300 tại x = 10.

Vậy với x = 10 dm thì S có giá trị nhỏ nhất.

Quảng cáo

Lời giải bài tập Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm giải bài toán tối ưu hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên