Bài 1.19 trang 16 Sách bài tập Giải tích 12



Bài 2: Cực trị của hàm số

Bài 1.19 trang 16 Sách bài tập Giải tích 12: Tìm cực trị của các hàm số sau:

Giải sách bài tập Toán 12 | Giải SBT Toán 12 Giải sách bài tập Toán 12 | Giải SBT Toán 12

Lời giải:

Quảng cáo

a) TXĐ: R

Giải sách bài tập Toán 12 | Giải SBT Toán 12

y′ = 0 ⇔ x = 64

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vậy ta có y = y(0) = 0 và yCT = y(64) = -32.

b) Hàm số xác định trên khoảng (−∞;+∞).

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vậy yCD = y(−2) = Giải sách bài tập Toán 12 | Giải SBT Toán 12

c) Hàm số xác định trên khoảng (−√10;√10).

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vì y’ > 0 với mọi (−√10;√10) nên hàm số đồng biến trên khoảng đó và do đó không có cực trị.

d) TXĐ: D = (−∞; −√6) ∪ (√6; +∞)

Giải sách bài tập Toán 12 | Giải SBT Toán 12 Giải sách bài tập Toán 12 | Giải SBT Toán 12 Giải sách bài tập Toán 12 | Giải SBT Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Từ đó ta thấy hàm số đạt cực đại tại x = -3, đạt cực tiểu tại x = -3 và yCT = y(3) = 9√3; yCD = y(−3) = −9√3

Quảng cáo

Các bài giải sách bài tập Giải tích 12 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


bai-2-cuc-tri-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên