Bài 2 trang 168 Sách bài tập Hình học 12



Đề toán tổng hợp ôn tập cuối năm

Bài 2 trang 168 Sách bài tập Hình học 12: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC. Biết rằng SH là đường cao của hình chóp đã cho và cạnh SC tạo với đáy hình chóp đó một góc bằng 60o

a) Thể tích hình chóp S.CDNM

b) Tính khoảng cách giữa DM và SC.

Lời giải:

Quảng cáo

a) Xét các hình vuông ABCD. Ta có hai tam giác vuông ADM và DCN bằng nhau nên ∠DMA = ∠CND. Từ đó suy ra DM ⊥ CN. Trong tam giác vuông CDN ta có:

CD2 = CH.CN ⇒ CH = 2a/√5

Suy ra SH = CH.tan60o = Giải sách bài tập Toán 12 | Giải SBT Toán 12

SCDNM = SABCD - SAMN - SBCM = 5a2/8

VS.CDNM = Giải sách bài tập Toán 12 | Giải SBT Toán 12

b) Gọi I là chân đường vuông góc kẻ từ H lên SC

Vì MD ⊥ (SCN), MD ∩ (SCN) = H nên

d(MD, SC) = d(H, SC) = HI = HC.sin60o = Giải sách bài tập Toán 12 | Giải SBT Toán 12

Quảng cáo

Các bài giải sách bài tập Hình học 12 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


de-toan-tong-hop-on-tap-cuoi-nam.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên