Bài 1.61 trang 36 Sách bài tập Giải tích 12



Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Bài 1.61 trang 36 Sách bài tập Giải tích 12: a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:

y = −x3 + 3x + 1

b) Chỉ ra phép biến hình biến (C) thành đồ thị (C’) của hàmsố:

y = (x + 1)3 − 3x − 4

c) Dựa vào đồ thị (C’), biện luận theo m số nghiệm của phương trình:

(x + 1)3 = 3x + m

d) Viết phương trình tiếp tuyến (d) của đồ thị (C’), biết tiếp tuyến đó vuông góc với đường thẳng

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Lời giải:

Quảng cáo

a)

Giải sách bài tập Toán 12 | Giải SBT Toán 12

b) Tịnh tiến (C) song song với trục Ox sang trái 1 đơn vị, ta được đồ thị (C1) của hàm số.

y = f(x) = −(x + 1)3 + 3(x + 1) + 1 hay f(x) = −(x + 1)3 + 3x + 4 (C1)

Lấy đối xứng (C1) qua trục Ox, ta được đồ thị (C’) của hàm số y = g(x) = (x + 1)3 − 3x – 4

Giải sách bài tập Toán 12 | Giải SBT Toán 12

c) Ta có: (x + 1)3 = 3x + m (1)

⇔ (x + 1)3 − 3x – 4 = m – 4

Số nghiệm của phương trình (1) là số giao điểm của hai đường :

y = g(x) = (x + 1)3 − 3x – 4 (C’) và y = m – 4 (d1)

Từ đồ thị, ta suy ra:

    +) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.

    +) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.

    +) 1 < m < 5 , phương trình (1) có ba nghiệm.

d) Vì (d) vuông góc với đường thẳng:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

nên ta có hệ số góc bằng 9.

Ta có: g′(x) = 3(x + 1)2 – 3

g′(x) = 9 ⇔ Giải sách bài tập Toán 12 | Giải SBT Toán 12

Có hai tiếp tuyến phải tìm là:

y – 1 = 9(x – 1) ⇔ y = 9x – 8;

y + 3 = 9(x + 3) ⇔ y = 9x + 24.

Quảng cáo

Các bài giải sách bài tập Giải tích 12 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên