Bài 3.62 trang 134 Sách bài tập Hình học 12



Câu hỏi và bài tập chương 3

Bài 3.62 trang 134 Sách bài tập Hình học 12: Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh BB1, CD. A1D1. Tính khoảng cách và góc giữa hai đường thẳng MP và C1N.

Lời giải:

Quảng cáo
Giải sách bài tập Toán 12 | Giải SBT Toán 12

Ta chọn hệ trục tọa độ như sau: B1 là gốc tọa độ, B1A1 = i, B1C1 = j, B1B = k. Trong hệ trục vừa chọn, ta có B1(0; 0; 0), B(0; 0; 1), A1(1; 0; 0), D1(1; 1; 0), C(0; 1; 1), D(1; 1; 1), C1(0; 1; 0).

Suy ra M(0; 0; 1/2), P(1; 1/2; 0), N(1/2; 1; 1)

Ta có MP = (1; 1/2; −1/2); C1N = (1/2; 0; 1)

Gọi (α) là mặt phẳng chứa C1N và song song với MP. (α) có vecto pháp tuyến là n = (1/2; −5/4; −14) hay n' = (2; −5; −1)

Phương trình của (α) là 2x – 5(y – 1) – z = 0 hay 2x – 5y – z + 5 = 0

Ta có:

d(MP, C1N) = d(M,(α)) Giải sách bài tập Toán 12 | Giải SBT Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vậy ∠(MP,C1N) = 90o.

Quảng cáo

Các bài giải sách bài tập Hình học 12 khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


cau-hoi-va-bai-tap-chuong-3.jsp


Giải bài tập lớp 12 sách mới các môn học