Cho các mệnh đề P: Phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm phân biệt
Sách bài tập Toán 10 Bài tập ôn tập cuối năm
Bài 1 trang 70 Sách bài tập Toán lớp 10 Tập 2: Cho các mệnh đề:
P: “Phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt”;
Q: “Phương trình bậc hai ax2 + bx + c = 0 có biệt thức ∆ = b2 – 4ac > 0”.
a) Hãy phát biểu các mệnh đề: P ⇒ Q, Q ⇒ P, P ⇔ Q, . Xét tính đúng sai của các mệnh đề này.
b) Dùng các khái niệm “điều kiện cần” và “điều kiện đủ” để diễn tả mệnh đề P ⇒ Q.
c) Gọi X là tập hợp các phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt, Y là tập hợp các phương trình bậc hai ax2 + bx + c = 0 có hệ số a và c trái dấu. Nêu mối quan hệ giữa hai tập hợp X và Y.
Lời giải:
a)
+ Mệnh đề P ⇒ Q: “Nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt thì phương trình bậc hai ax2 + bx + c = 0 có biệt thức ∆ = b2 – 4ac > 0”. Đây là mệnh đề đúng.
+ Mệnh đề Q ⇒ P: “ Nếu phương trình bậc hai ax2 + bx + c = 0 có biệt thức ∆ = b2 – 4ac > 0 thì phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt”. Đây là mệnh đề đúng.
+ Mệnh đề P ⇔ Q: “Phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt khi và chỉ khi phương trình bậc hai ax2 + bx + c = 0 có biệt thức ∆ = b2 – 4ac > 0”. Do P ⇒ Q, Q ⇒ P đều là các mệnh đề đúng nên mệnh đề P ⇔ Q là mệnh đề đúng.
+ Mệnh đề
Mệnh đề là mệnh đề phủ định của mệnh đề P và được phát biểu là: “Phương trình bậc hai ax2 + bx + c = 0 không có hai nghiệm phân biệt”.
Mệnh đề là mệnh đề phủ định của mệnh đề Q và được phát biểu là: “Phương trình bậc hai ax2 + bx + c = 0 có biệt thức ∆ = b2 – 4ac ≤ 0”.
Khi đó, ta phát biểu mệnh đề : “Nếu phương trình bậc hai ax2 + bx + c = 0 không có hai nghiệm phân biệt thì phương trình bậc hai ax2 + bx + c = 0 có biệt thức ∆ = b2 – 4ac ≤ 0”. Mệnh đề này là mệnh đề đúng.
b)
+ Phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt là điều kiện đủ để phương trình bậc hai ax2 + bx + c = 0 có biệt thức ∆ = b2 – 4ac > 0.
+ Phương trình bậc hai ax2 + bx + c = 0 có biệt thức ∆ = b2 – 4ac > 0 là điều kiện cần để phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt.
c) Ta có các phương trình bậc hai ax2 + bx + c = 0 có hệ số a và c trái dấu thì luôn có hai nghiệm trái dấu, hiển nhiên đây là hai nghiệm phân biệt. Nhưng các phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt thì hai nghiệm này chưa chắc đã trái dấu.
Do đó mọi phần tử của tập hợp Y thì đều là phần tử của tập hợp X.
Vậy Y là tập con của tập hợp X và ta viết Y ⊂ X.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT