Cho tam thức bậc hai f(x) = ax^2 + bx + c với đồ thị là parabol có đỉnh I(1; 4)
Sách bài tập Toán 10 Bài tập ôn tập cuối năm
Bài 3 trang 70 Sách bài tập Toán lớp 10 Tập 2: Cho tam thức bậc hai f(x) = ax2 + bx + c với đồ thị là parabol có đỉnh I(1; 4) và đi qua điểm A(2; 3).
a) Xác định các hệ số a, b, c của tam thức bậc hai f(x).
b) Vẽ parabol này.
c) Từ đồ thị đã vẽ ở câu b), hãy cho biết khoảng đồng biến, khoảng nghịch biến và tập giá trị của hàm số y = f(x).
d) Lập bảng xét dấu để giải bất phương trình .
Lời giải:
a) Parabol có đỉnh là I(1; 4) nên có phương trình dạng y = a(x – 1)2 + 4.
Vì điểm A(2; 3) thuộc parabol nên ta có:
3 = a(2 – 1)2 + 4 ⇔ a + 4 = 3 ⇔ a = – 1.
Vậy tam thức bậc hai cần tìm là f(x) = –(x – 1)2 + 4 hay f(x) = – x2 + 2x + 3.
Suy ra các hệ số là: a = – 1; b = 2; c = 3.
b) Ta có: a = – 1 < 0 nên parabol quay bề lõm xuống dưới.
Đỉnh parabol là I(1; 4).
Trục đối xứng x = 1.
Giao điểm của parabol với trục Oy là (0; 3). Điểm đối xứng với điểm (0; 3) qua trục đối xứng x = 1 là (2; 3).
Giao điểm của parabol với trục Ox là (– 1; 0) và (3; 0).
Vẽ đường cong đi qua các điểm trên ta được parabol cần vẽ.
c) Từ đồ thị trên ta thấy:
- Hàm số đồng biến trên khoảng (– ∞; 1) và nghịch biến trên khoảng (1; + ∞).
- Tập giá trị của hàm số là (– ∞; 4].
d) Xét bất phương trình , hay .
Tam thức f(x) = – x2 + 2x + 3 có ∆' = 12 – (– 1) . 3 = 4 > 0 và a = – 1 < 0, f(x) có hai nghiệm phân biệt x1 = – 1 và x2 = 3. Do đó, f(x) > 0 với mọi x ∈ (– 1; 3) và f(x) < 0 với mọi x ∈ (– ∞; – 1) ∪ (3; + ∞).
Ta có bảng xét dấu sau:
Vậy tập nghiệm của bất phương trình đã cho là S = (– ∞; – 1] ∪ (2; 3].
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT