Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều

Giải sách bài tập Toán 11 Bài tập cuối chương 7 - Kết nối tri thức

Bài 7.51 trang 43 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và SC = a2 . Gọi H là trung điểm của cạnh AB.

a) Chứng minh rằng SH (ABCD).

b) Tính theo a thể tích khối chóp S.ABCD.

c) Tính theo a khoảng cách từ điểm A đến mặt phẳng (SBD).

Quảng cáo

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều

a) ABCD là hình vuông cạnh a nên AB = BC = CD = DA = a.

Do tam giác SAB đều cạnh a và H là trung điểm của AB nên SH AB và SH = a32 ; AH = BH = AB2=a2 .

Xét tam giác BHC vuông tại B có HC = BC2+BH2=a2+a24=a52 .

SC2=a22=2a2 ; SH2+HC2=a322+a522=2a2 .

Suy ra SC2 = SH2 + HC2. Do đó tam giác SHC vuông tại H hay SH HC mà SH AB nên SH (ABCD).

b) Ta có VS.ABCD=13SABCDSH=13a2a32=a336 .

c) Vì H là trung điểm của AB nên d(A, (SBD)) = 2 . d(H, (SBD)).

Kẻ HK BD tại K, HQ SK tại Q.

Ta có SH (ABCD) nên SH BD mà HK BD nên BD (SHK), suy ra BD HQ.

Vì BD HQ và HQ SK nên HQ (SBD), suy ra d(H, (SBD)) = HQ.

Xét tam giác ABC vuông tại B, có AC = AB2+BC2=a2+a2=a2 .

Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC và BD, suy ra AO = AC2 .

Xét tam giác ABO có HK là đường trung bình nên HK = AO2=AC4=a24.

Xét tam giác SHK vuông tại H, HQ là đường cao, ta có

1HQ2=1SH2+1HK2=43a2+162a2=283a2HQ=a2114.

Vậy d(A,(SBD)) = 2HQ = a217.

Quảng cáo

Lời giải SBT Toán 11 Bài tập cuối chương 7 hay khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

Săn SALE shopee Tết:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Kết nối tri thức khác
Tài liệu giáo viên