Cho hàm số y = f(x) = (ax^2+bx+c)/(mx+n) với (a, m ≠ 0) có đồ thị là đường cong như Hình 23

Giải SBT Toán 12 Cánh diều Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Bài 79 trang 38 SBT Toán 12 Tập 1: Cho hàm số y = f(x) = ax2+bx+cmx+n với (a, m ≠ 0) có đồ thị là đường cong như Hình 23.

Cho hàm số y = f(x) = (ax^2+bx+c)/(mx+n) với (a, m ≠ 0) có đồ thị là đường cong như Hình 23

Căn cứ vào đồ thị hàm số:

a) Tìm khoảng đơn điệu, điểm cực đại, cực tiểu của hàm số.

b) Viết phương trình đường tiệm cận đứng, tiệm cận xiên của đồ thị hàm số.

c) Phương trình f(x) = 3 có bao nhiêu nghiệm?

d) Tìm công thức xác định hàm số y = f(x), biết m = 1.

Quảng cáo

Lời giải:

Dựa vào đồ thị hàm số Hình 23, ta thấy:

a) Hàm số đồng biến trên các khoảng (−∞; −3) và (−1; +∞).

Hàm số nghịch biến trên các khoảng (−3; −2) và (−2; −1).

Điểm cực đại x = −3, điểm cực tiểu x = −1.

b) Tiệm cận đứng của đồ thị hàm số có phương trình x = −2.

Tiệm cận xiên của đồ thị hàm số các điểm (−2; −1); (−1; 0) và (0; 1).

Gọi phương trình đường tiệm cận xiên của đồ thị hàm số y = hx + k (h ≠ 0).

Ta có: Cho hàm số y = f(x) = (ax^2+bx+c)/(mx+n) với (a, m ≠ 0) có đồ thị là đường cong như Hình 23

Vậy tiệm cận xiên của đồ thị hàm số có phương trình: y = x + 1.

c) Số nghiệm của phương trình f(x) = 3 là số giao điểm của đồ thị hàm số f(x) và đường thẳng y = 3. Căn cứ vào đồ thị hàm số, phương trình f(x) = 3 có hai nghiệm phân biệt.

Cho hàm số y = f(x) = (ax^2+bx+c)/(mx+n) với (a, m ≠ 0) có đồ thị là đường cong như Hình 23

d) Ta có: y = f(x) = ax2+bx+cmx+n

Với m = 1, f(x) = ax2+bx+cx+n .

Đồ thị hàm số có tiệm cận đứng x = −2 nên n = 2.

Lúc này, ta có: f(x) = ax2+bx+cx+2 .

Thực hiện phép chia đa thức lấy tử (ax2 + bx + c) chia cho mẫu (x + 2) ta được thương là ax + b – 2a chính là phương trình đường tiệm cận xiên.

⇒ ax + b – 2a = x + 1 ⇒ Cho hàm số y = f(x) = (ax^2+bx+c)/(mx+n) với (a, m ≠ 0) có đồ thị là đường cong như Hình 23 hay Cho hàm số y = f(x) = (ax^2+bx+c)/(mx+n) với (a, m ≠ 0) có đồ thị là đường cong như Hình 23.

⇒f(x) = x2+3x+cx+2 .

Đồ thị hàm số đi qua điểm (−3; −3) nên ta có: (3)2+3.(3)+c3+2 = −3 ⇒ c = 3.

Vậy y = f(x) = x2+3x+3x+2.

Quảng cáo

Lời giải SBT Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Cánh diều khác