Xét phương trình tương đối giữa hai đường thẳng d và d' trong mỗi trường hợp sau

Giải SBT Toán 12 Chân trời sáng tạo Bài 2: Phương trình đường thẳng trong không gian

Bài 4 trang 54 SBT Toán 12 Tập 2: Xét phương trình tương đối giữa hai đường thẳng d và d' trong mỗi trường hợp sau:

Quảng cáo

a) d: x=ty=1+3tz=1t và d': x=2+2t'y=7+6t'z=12t'

b) d: x22=y3=z1 và d': x4=y6=z2

c) d: x=1+ty=1+tz=2t và d': x22=y23=z11

d) d: x12=y11=z21 và d': x=2y=1+tz=7

Lời giải:

a) Đường thẳng d đi qua điểm M(0; 1; 1) và nhận a = (1; 3; −1) làm vectơ chỉ phương.

Đường thẳng d' đi qua điểm M'(2; 7; −1) và nhận a' = (2; 6; −2) làm vectơ chỉ phương.

Ta có: MM'=2;6;2a'=2a=MM', suy ra a,a',MM' cùng phương.

Do đó d ≡ d'.

b) Đường thẳng d đi qua điểm M(2; 0; 0) và nhận a = (2; 3; 1) làm vectơ chỉ phương.

Đường thẳng d' đi qua điểm M'(0; 0; 0) và nhận a' = (4; 6; 2) làm vectơ chỉ phương.

Ta có: MM'=2;0;0a'=2aa,MM'=3100;1202;2320=0;2;60.

Do đó d ∥ d'.

c) Đường thẳng d đi qua điểm M(1; 1; 2) và nhận a = (1; 1; −1) làm vectơ chỉ phương.

Đường thẳng  d' đi qua điểm M'(2; 2; 1) và nhận a' = (2; 3; 1) làm vectơ chỉ phương.

Ta có: MM'=1;0;5a,a'=1;0;20a,a'MM'=0.

Do đó hai đường thẳng d và d' chéo nhau.

Quảng cáo

Lời giải SBT Toán 12 Bài 2: Phương trình đường thẳng trong không gian hay khác:

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Chân trời sáng tạo khác
Tài liệu giáo viên