Tìm các khoảng đơn điệu và các cực trị (nếu có) của các hàm số sau
Giải sách bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số - Kết nối tri thức
Bài 1.4 trang 9 SBT Toán 12 Tập 1: Tìm các khoảng đơn điệu và các cực trị (nếu có) của các hàm số sau:
a) y = x4 – 2x2 + 3;
b) y = x2lnx.
Lời giải:
a) y = x4 – 2x2 + 3
Tập xác định: D = ℝ.
Ta có: y' = 4x3 – 4x
y' = 0 ⇔ 4x3 – 4x = 0 ⇔ x = 0 hoặc x = ±1.
Ta có bảng biến thiên như sau:
Từ bảng biến thiên, ta có:
Hàm số nghịch biến trên các khoảng (−∞; −1) và (0; 1).
Hàm số đồng biến trên các khoảng (−1; 0) và (1; +∞).
Hàm số đạt cực đại tại x = 0 và yCĐ = y(0) = 3.
Hàm số đạt cực tiểu tại x = 1 và tại x = −1 và yCT = y(1) = y(−1) = 2.
b) y = x2lnx
Tập xác định: D = (0; +∞).
Ta có: y' = 2xlnx + x = x(2lnx + 1)
y' = 0 ⇔ x(2lnx + 1) = 0 ⇔ x = .
Từ đây ta có bảng biến thiên như sau:
Hàm số nghịch biến trên khoảng .
Hàm số đồng biến trên khoảng .
Hàm số đạt cực tiểu tại x = và yCT = y = .
Lời giải Sách bài tập Toán lớp 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay khác:
Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
SBT Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
SBT Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
SBT Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT