Cho tam giác ABC có góc A là góc tù Các đường trung trực của AB và AC

Giải sách bài tập Toán lớp 7 Bài 6: Tính chất ba đường trung trực của tam giác

Bài 4 trang 58 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có góc A là góc tù. Các đường trung trực của AB và AC cắt nhau tại O và lần lượt cắt BC tại E và F. Hãy chứng minh:

a) ∆EOA = ∆EOB; ∆FOA = ∆FOC.

b) Chứng minh rằng AO là tia phân giác của góc EAF.

Quảng cáo

Lời giải:

Cho tam giác ABC có góc A là góc tù Các đường trung trực của AB và AC

a) Vì O là giao điểm của hai đường trung trực của tam giác ABC nên OA = OB = OC.

Vì E nằm trên trung trực của AB nên ta có EA = EB.

Vì F nằm trên trung trực của AC nên ta có: FA = FC.

• Xét tam giác OEA và tam giác OEB có:

AE = BE (chứng minh trên),

OA = OB (chứng minh trên),

OE là cạnh chung.

Do đó ∆EOA = ∆EOB (c.c.c).

• Xét tam giác OFA và tam giác OFC có:

AF = CF (chứng minh trên),

OA = OC (chứng minh trên),

OF là cạnh chung.

Do đó ∆FOA = ∆FOC (c.c.c).

Vậy ∆EOA = ∆EOB; ∆FOA = ∆FOC.

b) Ta có OB = OC nên tam giác OBC cân tại O.

Suy ra OBE^=OCF^ (1)

Ta có ∆OEA = ∆OEB (câu a)

Suy ra OAE^=OBE^ (hai góc tương ứng)(2)

Tương tự từ ∆OFA = ∆OFC (câu a)

Suy ra OAF^=OCF^ (hai góc tương ứng)(3)

Từ (1),(2),(3) ta có: OAE^=OAF^

Suy ra AO là tia phân giác của góc EAF.

Vậy AO là tia phân giác của góc EAF.

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Chân trời sáng tạo (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Chân trời sáng tạo khác
Tài liệu giáo viên