Cho đường tròn tâm O, đường kính MN. Một đường tròn (N) cắt (O) tại A và B

Giải sách bài tập Toán 9 Bài tập cuối chương 5 - Kết nối tri thức

Bài 5.35 trang 72 sách bài tập Toán 9 Tập 1: Cho đường tròn tâm O, đường kính MN. Một đường tròn (N) cắt (O) tại A và B.

a) Chứng minh rằng MA và MB là hai tiếp tuyến của (N).

b) Đường thẳng qua N và vuông góc với NA cắt MB tại C. Chứng minh hai điểm M và N đối xứng với nhau qua OC.

c) Đường thẳng qua M và vuông góc với MA cắt NB tại D. Chứng minh ba điểm O, C và D thẳng hàng.

Quảng cáo

Lời giải:

Cho đường tròn tâm O, đường kính MN. Một đường tròn (N) cắt (O) tại A và B

a) Vì MN là đường kính của (O), A là một điểm nằm trên (O) nên tam giác MAN vuông tại A hay MA ⊥ AN.

Mà A nằm trên (N) nên MA là tiếp tuyến tại A của (N). (đpcm)

Mặt khác, MN là đường kính của (O), B là một điểm nằm trên (O) nên tam giác MBN vuông tại A hay MB ⊥ BN.

Mà B nằm trên (N) nên MB là tiếp tuyến tại B của (N). (đpcm)

b) Vì AM ⊥ AN và CN ⊥ AN nên AM // CM, suy ra M^1=N^1 (hai góc so le trong).

Mà MA và MN là hai tiếp tuyến của (N) nên MN là đường phân giác của góc AMB hay M^1=M^2

Do đó M^2=M^1=N^1, suy ra tam giác CMN cân tại C.

Tam giác CMN cân tại C có OM = ON nên OC là trung tuyến của CO và đồng thời là trung trực của MN.

Vậy M và N đối xứng với nhau qua OC. (đpcm)

c) Do MD ⊥ MA và AN ⊥ AM nên MD // AN, do đó DNM^=ANM^.

Mà MA và MN là hai tiếp tuyến cắt nhau của (N) nên MN là đường phân giác của góc ANB. Do đó DNM^=ANM^

Tử đó suy ra DMN^=DNM^=ANM^, do đó tam giác DMN cân tại D.

Tam giác DMN cân tại D nên D nằm trên đường trung trực CO của MN hay ba điểm O, C, D thẳng hàng. (đpcm).

Quảng cáo

Lời giải SBT Toán 9 Bài tập cuối chương 5 hay khác:

Quảng cáo
Quảng cáo

Xem thêm giải sách bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Kết nối tri thức của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Kết nối tri thức khác
Tài liệu giáo viên