Bài 10 trang 103 Toán 10 Tập 1 Chân trời sáng tạo
Giải Toán 10 Chân trời sáng tạo Bài tập cuối chương 5
Bài 10 trang 103 Toán lớp 10 Tập 1: Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng .
Lời giải:
Tam giác ABC đều nên .
Qua M kẻ: HG // AB, IJ // BC, KL // AC với H, L ∈ BC; K, J ∈ AB; G, I ∈ AC.
Khi đó ta có AKMG, BJMH, MLCI là các hình bình hành.
Theo quy tắc hình hình hành ta có:
(1)
Ta có: MH // AB (đồng vị)
ML // AC (đồng vị)
Tam giác MHL có nên tam giác MHL đều.
Có MD vuông góc với HL nên MD đồng thời là đường trung tuyến của tam giác MHL.
Suy ra D là trung điểm của HL.
Khi đó ta có: .
Chứng minh tương tự ta có: .
Do đó:
(2)
Từ (1) và (2) suy ra:
Mà O là trọng tậm của tam giác ABC nên
Do đó:
Suy ra
Lời giải bài tập Toán 10 Bài tập cuối chương 5 hay, chi tiết khác:
Các bài học để học tốt Toán 10 Bài tập cuối chương 5:
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Toán 10 Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Toán 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST