Giải Toán 10 trang 12 Tập 2 Kết nối tri thức

Với Giải Toán 10 trang 12 Tập 2 trong Bài 16: Hàm số bậc hai Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 12.

Giải Toán 10 trang 12 Tập 2 Kết nối tri thức

Câu hỏi trang 12 Toán 10 Tập 2: Hàm số nào dưới đây là hàm số bậc hai?

A. y = x4 + 3x2 + 2.

B. y=1x2

C. y = – 3x2+ 1. 

D. y=31x2+31x1

Quảng cáo

Lời giải:

Đáp án đúng là: C

Hàm số bậc hai là hàm số cho bởi công thức y = ax2+ bx + x với a, b, c là các hằng số và a ≠ 0. 

Vậy trong các hàm số đã cho thì hàm số y = – 3x2 + 1 là hàm số bậc hai với các hệ số a = – 3, b = 0 và c = 1. 

Chú ý: Hàm số y=31x2+31x1 không phải là hàm số bậc hai, mà đây là hàm số có thể đưa về dạng bậc hai nếu ta đặt t=1x.

Luyện tập 1 trang 12 Toán 10 Tập 2: Cho hàm số y = (x – 1)(2 – 3x). 

a) Hàm số đã cho có phải là hàm số bậc hai không? Nếu có, hãy xác định các hệ số a, b, c của nó. 

b) Thay dấu “?” bằng các số thích hợp để hoàn thành bảng giá trị sau của hàm số đã cho. 

x

– 2

– 1

0

1

y

?

?

?

?

 

Quảng cáo


Lời giải:

a) Ta có: y = (x – 1)(2 – 3x) = 2x – 3x2 – 2 + 3x = – 3x2 + 5x – 2.

Suy ra y = – 3x2 + 5x – 2, đây là hàm số bậc hai với các hệ số a = – 3, b = 5, c = – 2. 

b) Với x = – 2 thì y = – 3 . (– 2)2 + 5 . (– 2) – 2 = – 24.

Với x = – 1 thì y = – 3 . (– 1)2 + 5 . (– 1) – 2 = – 10.

Với x = 0 thì y = – 3 . 02 + 5 . 0 – 2 = – 2.

Với x = 1 thì y = – 3 . 12 + 5 . 1 – 2 = 0. 

Vậy ta có bảng sau: 

x

– 2

– 1

0

1

y

– 24

– 10

– 2

0

 

Vận dụng 1 trang 12 Toán 10 Tập 2: Một viên bi rơi tự do từ độ cao 19,6 m xuống mặt đất. Độ cao h (mét) so với mặt đất của viên bi trong khi rơi phụ thuộc vào thời gian t (giây) theo công thức: h = 19,6 – 4,9t2; h, t ≥ 0. 

a) Hỏi sau bao nhiêu giây kể từ khi rơi thì viên bi chạm đất?

b) Tìm tập xác định và tập giá trị của hàm số h. 

Quảng cáo

Lời giải:

a) Viên bi rơi chạm đất thì h = 0. 

Khi đó: 19,6 – 4,9t2= 0 ⇔ 4,9t2= 19,6 ⇔ t2 = 4 ⇔ t = 2 hoặc t = – 2. 

Vì t ≥ 0 nên ta chọn t = 2. 

Vậy sau 2 giây kể từ khi rơi thì viên bi chạm đất. 

b) Ta có: h = 19,6 – 4,9t2

Đây là hàm số bậc hai với biến t, mà t ≥ 0.

Do đó, tập xác định của hàm số h này là D = [0; + ∞). 

Vì t2 ≥ 0 với mọi t nên – 4,9t2 ≤ 0 với mọi t.

Suy ra – 4,9t2­+ 19,6 ≤ 0 + 19,6 hay 19,6 – 4,9t2 ≤ 19,6 với mọi t. 

Do đó: h ≤ 19,6 với mọi t. 

Mặt khác, h ≥ 0.

Khi đó: 0 ≤ h ≤ 19,6 với mọi t. 

Vậy tập giá trị của hàm số h là [0; 19,6]. 

HĐ2 trang 12 Toán 10 Tập 2: Xét hàm số y = S(x) = – 2x2 + 20x (0 < x < 10). 

a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số y = – 2x2 + 20x trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị của hàm số y = – 2x2 + 20x có giống với đồ thị của hàm só y = – 2x2 hay không?

b) Quan sát dạng đồ thị của hàm số y = – 2x2 + 20x trong Hình 6.10, tìm tọa độ điểm cao nhất của đồ thị. 

Xét hàm số y = S(x) = – 2x^2+ 20x (0 < x < 10)

c) Thực hiện phép biến đổi 

y = – 2x2 + 20x = – 2(x2 – 10x) = – 2(x2 – 2 . 5 . x + 25) + 50 = – 2(x – 5)2 + 50. 

Hãy cho biết giá trị lớn nhất của diện tích mảnh đất được rào chắn. Từ đó suy ra lời giải của bài toán ở phần mở đầu. 

Quảng cáo

Lời giải:

a) Ta biểu diễn các điểm có tọa độ (0; 0), (2; 32), (4; 48), (5; 50), (6; 48), (8; 32), (10; 0) lên mặt phẳng tọa độ và nối lại, ta được dạng của đồ thị hàm số y = – 2x2 + 20x trên khoảng (0; 10). 

Xét hàm số y = S(x) = – 2x^2+ 20x (0 < x < 10)

Dạng của đồ thị hàm số y = – 2x2 + 20x giống với dạng của đồ thị hàm số y = – 2x2

b) Quan sát đồ thị ta thấy tọa độ điểm cao nhất của đồ thị hàm số y = – 2x2 + 20x là điểm (5; 50). 

c) Vì (x – 5)2 ≥ 0 với mọi số thực x 

Suy ra – 2(x – 5)2 ≤ 0 với mọi số thực x

Do đó: – 2(x – 5)2 + 50 ≤ 0 + 50 = 50 với mọi số thực x. 

Khi đó: y ≤ 50. Vậy giá trị lớn nhất của y là 50 hay diện tích lớn nhất của mảnh đất được rào chắn là 50 m2

Lời giải bài toán mở đầu: 

Gọi x (mét, x > 0) là khoảng cách từ điểm cọc P và Q đến bờ tường. 

Tấm lưới dài 20 m và được rào chắn ba mặt áp lên bờ tường như Hình 6.8, do đó ta có: 

 x + x + PQ = 20. 

Suy ra: PQ = 20 – x – x = 20 – 2x (m). 

Vì PQ > 0 (độ dài dương) nên 20 – 2x > 0 ⇔ 2x < 20 ⇔ x < 10. 

Do đó ta có điều kiện của x là 0 < x < 10. 

Mảnh đất được rào chắn có dạng hình chữ nhật với hai kích thước là x (m) và 20 – 2x (m) với 0 < x < 10. 

Khi đó diện tích của mảnh đất là S(x) = x . (20 – 2x) = – 2x2 + 20x. 

Theo yêu cầu bài toán, ta cần tìm giá trị của x để S(x) có giá trị lớn nhất. 

Ta có: S(x) = – 2(x2 – 10x) = – 2(x2 – 2 . 5 . x + 25) + 50 = – 2(x – 5)2 + 50 ≤ 50 với mọi số thực x. 

Dấu “=” xảy ra khi x – 5 = 0 ⇔ x = 5 (thỏa mãn điều kiện 0 < x < 10). 

Do đó giá trị lớn nhất của S(x) là 50 tại x = 5. 

Vậy hai cột góc hàng rào cần phải cắm cách bờ tường 5 m để mảnh đất được rào chắn của bác Việt có diện tích lớn nhất. 

Lời giải bài tập Toán 10 Bài 16: Hàm số bậc hai hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên