Giải Toán 10 trang 41 Tập 2 Kết nối tri thức
Với Giải Toán 10 trang 41 Tập 2 trong Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 41.
Giải Toán 10 trang 41 Tập 2 Kết nối tri thức
Vận dụng trang 41 Toán 10 Tập 2: Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15 m, chiều rộng AB = 12 m. Phần tam giác DEF là nơi ông bà nuôi vịt, AE = 5 m, CF = 6 m (H.7.11).
a) Chọn hệ trục tọa độ Oxy, có điểm O trùng với điểm B, các tia Ox, Oy tương ứng trùng với các tia BC, BA. Chọn 1 đơn vị độ dài trên mặt phẳng tọa độ tương ứng với 1 m trong thực tế. Hãy xác định tọa độ của các điểm A, B, C, D, E, F và viết phương trình đường thẳng EF.
b) Nam đứng ở vị trí B câu cá và có thể quăng lưỡi câu xa 10,7 m. Hỏi lưỡi câu có thể rơi vào nơi nuôi vịt hay không ?
Lời giải:
a) Đặt hệ trục tọa độ như hình vẽ sau:
Vì B trùng với gốc tọa độ O nên B có tọa độ là (0; 0).
Vì ABCD là hình chữ nhật nên CD = AB = 12 m, BC = AD = 15 m.
Điểm A thuộc trục Oy và có AO = AB = 12 m nên A có tọa độ là (0; 12).
Điểm C thuộc trục Ox và có CO = CB = 15 m nên C có tọa độ là (15; 0).
Ta có: DC ⊥ Ox (do DC ⊥ BC), DA ⊥ Oy (do DA ⊥ AB) và DC = 12 m, DA = 15 m nên điểm D có tọa độ là (15; 12).
Từ E kẻ EH vuông góc với BC, H thuộc BC nên EH = AB = 12 m, lại có AE = 5 m, do đó điểm E có tọa độ là (5; 12).
Từ F kẻ FJ vuông góc với AB, J thuộc AB nên FJ = AD = 15 m, lại có CF = 6 m, do đó điểm F có tọa độ là (15; 6).
Vậy A(0; 12), B(0; 0), C(15; 0), D(15; 12), E(5; 12), F(15; 6).
Ta có: .
Chọn vectơ làm vectơ chỉ phương của đường thẳng EF thì vectơ pháp tuyến của đường thẳng EF là .
Đường thẳng EF đi qua điểm E(5; 12) và có một vectơ pháp tuyến là , do đó phương trình đường thẳng EF là: 3(x – 5) + 5(y – 12) = 0 hay 3x + 5y – 75 = 0.
b) Áp dụng công thức tính khoảng cách, ta có khoảng cách từ B đến EF là:
≈ 12,9 m.
Khoảng cách từ B đến EF là đường ngắn nhất từ B nơi Nam đứng đến EF, lưỡi câu có thể quăng xa 10,7 m và 10,7 m < 12,9 m nên lưỡi câu không thể rơi vào vị trí nuôi vịt.
Bài 7.7 trang 41 Toán 10 Tập 2: Xét vị trí tương đối giữa các cặp đường thẳng sau:
a) ∆1: và ∆2: 6x + 2y = 0.
b) d1: x + 2 = 0 và d2: – 3y + 2 = 0.
c) m1: x – 2y + 1 = 0 và m2: 3x + y – 2 = 0.
Lời giải:
a) Đường thẳng ∆1: có vectơ pháp tuyến là .
Đường thẳng ∆2: 6x + 2y = 0 có vectơ pháp tuyến là .
Ta có: nên hai vectơ và cùng phương, do đó hai đường thẳng ∆1 và ∆2 song song hoặc trùng nhau.
Mặt khác, điểm A vừa thuộc ∆1 vừa thuộc ∆2.
Vậy hai đường thẳng ∆1 và ∆2 trùng nhau.
b) Vectơ pháp tuyến của đường thẳng d1: x + 2 = 0 là và của d2: x – 3y + 2 = 0 là .
Ta có: nên hai vectơ và cùng phương, do đó hai đường thẳng d1 và d2 song song hoặc trùng nhau.
Mặt khác, điểm B(– 2; 0) thuộc d1 nhưng không thuộc d2.
Vậy hai đường thẳng d1 và d2 song song với nhau.
c) Xét hệ phương trình .
Lấy (2) trừ vế theo vế cho (1) ta được: 7y – 5 = 0 .
Thay vào (1) ta được: .
Do đó hệ trên có nghiệm duy nhất .
Vậy hai đường thẳng m1 và m2 cắt nhau tại điểm có tọa độ .
Bài 7.8 trang 41 Toán 10 Tập 2: Tính góc giữa các cặp đường thẳng sau:
a) ∆1: + y – 4 = 0 và ∆2: x + + 3 = 0;
b) d1: và d2: (t, s là các tham số).
Lời giải:
a) Vectơ pháp tuyến của đường thẳng ∆1: + y – 4 = 0 là và của ∆2: x + + 3 = 0 là .
Gọi φ là góc giữa hai đường thẳng ∆1 và ∆2. Ta có:
cosφ = .
Do đó, góc giữa ∆1 và ∆2 là φ = 30°.
b) Vectơ chỉ phương của đường thẳng d1 là , của đường thẳng d2 là .
Suy ra vectơ pháp tuyến của đường thẳng d1 là , của đường thẳng d2 là .
Gọi α là góc giữa hai đường thẳng d1 và d2. Ta có:
cosα = .
Do đó, góc giữa d1 và d2 là α = 45°.
Bài 7.9 trang 41 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho điểm A(0; – 2) và đường thẳng ∆: x + y – 4 = 0.
a) Tính khoảng cách từ điểm A đến đường thẳng ∆.
b) Viết phương trình đường thẳng a đi qua điểm M(– 1; 0) và song song với ∆.
c) Viết phương trình đường thẳng b đi qua điểm N(0; 3) và vuông góc với ∆.
Lời giải:
a) Áp dụng công thức tính khoảng cách, ta có khoảng cách từ điểm A đến đường thẳng ∆ là: d(A, ∆) = .
Vậy khoảng cách từ điểm A đến đường thẳng ∆ là .
b) Đường thẳng ∆ có vectơ pháp tuyến là .
Do a // ∆, nên vectơ pháp tuyến của a là .
Đường thẳng a đi qua điểm M(– 1; 0) và có vectơ pháp tuyến là , do đó phương trình đường thẳng a là: 1(x + 1) + 1(y – 0) = 0 hay x + y + 1 = 0.
c) Đường thẳng ∆ có vectơ chỉ phương là .
Do b ⊥ ∆, nên vectơ pháp tuyến của b là .
Đường thẳng b đi qua điểm N(0; 3) và có vectơ pháp tuyến là , do đó phương trình đường thẳng b là: 1(x – 0) – 1(y – 3) = 0 hay x – y + 3 = 0.
Bài 7.10 trang 41 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho tam giác ABC có A(1; 0), B(3; 2) và C(– 2; – 1).
a) Tính độ dài đường cao kẻ từ đỉnh A của tam giác ABC.
b) Tính diện tích tam giác ABC.
Lời giải:
a) Độ dài đường cao kẻ từ đỉnh của tam giác ABC chính là khoảng cách từ điểm A đến đường thẳng BC.
Ta có: .
Chọn vectơ chỉ phương của đường thẳng BC là .
Suy ra vectơ pháp tuyến của đường thẳng BC là .
Đường thẳng BC đi qua điểm B(3; 2) và có vectơ pháp tuyến , do đó phương trình đường thẳng BC là: 3(x – 3) – 5(y – 2) = 0 hay 3x – 5y + 1 = 0.
Khi đó khoảng cách từ A đến BC là:
d(A, BC) = .
Vậy độ dài đường cao kẻ từ đỉnh A của tam giác ABC là h = .
b) Ta có: BC = .
Diện tích tam giác ABC là:
S = (đvdt).
Vậy diện tích tam giác ABC là 2 đvdt.
Bài 7.11 trang 41 Toán 10 Tập 2: Chứng minh rằng hai đường thẳng d: y = ax + b (a ≠ 0) và d': y = a'x + b' (a' ≠ 0) vuông góc với nhau khi và chỉ khi aa' = – 1.
Lời giải:
Ta có: y = ax + b ⇔ ax – y + b = 0 hay d: ax – y + b = 0 nên vectơ pháp tuyến của đường thẳng d là .
Lại có: y = a'x + b' ⇔ a'x – y + b' = 0 hay d': a'x – y + b' = 0 nên vectơ pháp tuyến của đường thẳng d' là .
Hai đường thẳng d và d' vuông góc với nhau khi
.
Vậy d ⊥ d' ⇔ aa' = – 1.
Bài 7.12 trang 41 Toán 10 Tập 2: Trong mặt phẳng tọa độ, một tín hiệu âm thanh phát đi từ một vị trí và được ba thiết bị ghi tín hiệu đặt tại ba vị trí O(0; 0), A(1; 0), B(1; 3) nhận được cùng một thời điểm. Hãy xác định vị trí phát tín hiệu âm thanh.
Lời giải:
Gọi H(a; b) là vị trí tín hiệu âm thanh phát đi.
Vì ba thiết bị ghi tín hiệu đặt tại ba vị trí O(0; 0), A(1; 0), B(1; 3) nhận tín hiệu từ H phát đi tại cùng một thời điểm nên HO = HA = HB.
Ta có: , , .
Do đó: , , .
Vì HO = HA nên
⇔ a2 = a2 – 2a + 1 ⇔ 2a = 1 ⇔ a = .
Vì HA = HB nên
⇔ b2 = b2 – 6b + 9 ⇔ 6b = 9 ⇔ b = .
Thay a = và b = vào các phương trình ta thấy đều thỏa mãn.
Vậy vị trí phát tín hiệu âm thanh là tại điểm H có tọa độ .
Lời giải bài tập Toán 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách hay khác:
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT