Giải Toán 10 trang 47 Tập 2 Kết nối tri thức

Với Giải Toán 10 trang 47 Tập 2 trong Bài 21: Đường tròn trong mặt phẳng tọa độ Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 47.

Giải Toán 10 trang 47 Tập 2 Kết nối tri thức

Quảng cáo

Bài 7.13 trang 47 Toán 10 Tập 2: Tìm tâm và bán kính của đường tròn

(x + 3)2 + (y – 3)2 = 36. 

Lời giải:

Ta viết phương trình đường tròn đã cho về dạng: (x – (– 3))2 + (y – 3)2 = 62

Do đó đường tròn này có tâm I(– 3; 3) và bán kính R = 6. 

Bài 7.14 trang 47 Toán 10 Tập 2: Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn và tìm tâm, bán kính của đường tròn tương ứng. 

a) x2 + y2 + xy + 4x – 2 = 0; 

b) x2 + y2 – 2x – 4y + 5 = 0; 

c) x2 + y2 + 6x – 8y + 1 = 0. 

Quảng cáo


Lời giải:

a) Phương trình x2 + y2 + xy + 4x – 2 = 0 không có dạng x2 + y2 – 2ax – 2by + c = 0 với a, b, c là các số thực nên đây không phải phương trình đường tròn. 

b) x2 + y2 – 2x – 4y + 5 = 0 ⇔ x2 + y2 – 2 . 1 . x – 2 . 2 . y + 5 = 0.

Các hệ số: a = 1, b = 2, c = 5. 

Ta có: a2 + b2 – c = 12 + 22 – 5 = 0 nên đây cũng không phải phương trình đường tròn. 

c) x2 + y2 + 6x – 8y + 1 = 0 ⇔ x2 + y2 – 2 . (– 3) . x – 2 . 4 . y + 1 = 0.

Các hệ số: a = – 3, b = 4, c = 1. 

Ta có: a2 + b2 – c = (– 3)2 + 42 – 1 = 24 > 0 nên đây là phương trình đường tròn. 

Đường tròn này có tâm I(– 3; 4) và bán kính R =24 = 26

Bài 7.15 trang 47 Toán 10 Tập 2: Viết phương trình của đường tròn trong mỗi trường hợp sau: 

a) Có tâm I(– 2; 5) và bán kính R = 7; 

b) Có tâm I(1; – 2) và đi qua điểm A(– 2; 2);

c) Có đường kính AB, với A(– 1; – 3), B(– 3; 5); 

d) Có tâm I(1; 3) và tiếp xúc với đường thẳng x + 2y + 3 = 0.

Quảng cáo

Lời giải:

a) Đường tròn có tâm I(– 2; 5) và bán kính R = 7 có phương trình là 

(x – (–2))2 + (y – 5)2 = 72 hay (x + 2)2 + (y – 5)2 = 49. 

b) Đường tròn có tâm I và đi qua điểm A nên bán kính đường tròn là IA. 

Ta có: IA = 212+222 = 5. 

Do đó phương trình đường tròn là: (x – 1)2 + (y – (– 2))2 = 52 

Hay (x – 1)2 + (y + 2)2 = 25. 

c) Đường tròn có đường kính AB thì tâm của đường tròn này là trung điểm của AB.

Tọa độ trung điểm I của AB là I1+32;3+52 hay I(– 2; 1).

Ta có: AB = 312+532 = 217.

Bán kính của đường tròn đường kính AB là R = AB2=2172=17.

Khi đó phương trình đường tròn đường kính AB là:

x22+y12=172 hay (x + 2)2 + (y – 1)2 = 17.

d) Đường tròn (C) có tâm I(1; 3) và tiếp xúc với đường thẳng ∆: x + 2y + 3 = 0 thì khoảng cách từ tâm I đến ∆ chính bằng bán kính của (C).

Ta có: R = d(I, ∆) = 1+2.3+312+22=105=25.

Vậy phương trình đường tròn (C) là:

x12+y32=252 hay (x – 1)2 + (y – 3)2 = 20.

Bài 7.16 trang 47 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho tam giác ABC, với A(6; – 2), B(4; 2), C(5; –5). Viết phương trình đường tròn ngoại tiếp tam giác đó. 

Quảng cáo

Lời giải:

Đường tròn ngoại tiếp tam giác ABC là đường tròn đi qua ba điểm A, B, C. 

Trong mặt phẳng tọa độ, cho tam giác ABC, với A(6; – 2), B(4; 2), C(5; –5)

Các đoạn thẳng AB, BC tương ứng có trung điểm là M(5; 0), N92;  32

Đường thẳng trung trực d1 của đoạn thẳng AB đi qua điểm M(5; 0) và có vectơ pháp tuyến AB=2;4

AB=2;4 cùng phương với n1=1;2 nên d1 cũng nhận n1=1;2 là vectơ pháp tuyến. Do đó, phương trình của d1 là: 1(x – 5) – 2(y – 0) = 0 hay x – 2y – 5 = 0. 

Đường thẳng trung trực d2 của đoạn thẳng BC đi qua N92;  32 và có vectơ pháp tuyến BC=1;7 , do đó phương trình d2 là:1x927y+32=0 hay x – 7y – 15 = 0. 

Tâm I của đường tròn (C) ngoại tiếp tam giác ABC cách đều ba điểm A, B, C nên I là giao điểm của d1 và d2

Vậy tọa độ của I là nghiệm của hệ phương trình x2y5=0x7y15=0

Suy ra I(1; – 2). Đường tròn (C) có bán kính là IA = 612+222=5.

Vậy phương trình của (C) là: (x – 1)2 + (y + 2)2 = 25.

Bài 7.17 trang 47 Toán 10 Tập 2: Cho đường tròn (C): x2 + y2+ 2x – 4y + 4  = 0. Viết phương trình tiếp tuyến d của (C) tại điểm M(0; 2).  

Lời giải:

Ta có: x2 + y2 + 2x – 4y + 4 = 0 ⇔ x2 + y2 – 2 . (– 1) . x – 2 . 2 . y + 4 = 0.

Các hệ số: a = – 1, b = 2, c = 4. 

Khi đó đường tròn (C) có tâm I(– 1; 2). 

Do 02 + 22 + 2 . 0 – 4 . 2 + 4 = 0 nên điểm M(0; 2) thuộc (C). 

Tiếp tuyến d của (C) tại điểm M(0; 2) có vectơ pháp tuyến IM=0+1;22=1;0, nên có phương trình d: 1(x – 0) + 0(y – 2) = 0 hay d: x = 0. 

Bài 7.18 trang 47 Toán 10 Tập 2: Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng tọa độ. Theo đó, tại thời điểm t (0 ≤ t ≤ 180) vật thể ở vị trí có tọa độ (2 + sint°; 4 + cost°). 

a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể. 

b) Tìm quỹ đạo chuyển động của vật thể. 

Lời giải:

a) Vị trí ban đầu của vật thể là tại thời điểm t = 0, nên tọa độ của điểm ở vị trí này là: 

(2 + sin0°; 4 + cos0°) = (2; 5).

Vị trí kết thúc của vật thể là tại thời điểm t = 180, nên tọa độ của điểm ở vị trí này là: 

(2 + sin 180°; 4 + cos 180°) = (2; 3).

b) Gọi điểm M(x; y) thuộc vào quỹ đạo chuyển động của vật thể.

Ta có: x = 2 + sin t°và y = 4 + cost°.

Suy ra: x – 2 = sin t° và y – 4 = cost°.

Mà sin2 t° + cost° = 1     (0 ≤ t ≤ 180)

Do đó ta có: (x – 2)2 + (y – 4)2 = 1.

Vậy vật thể chuyển động trên đường tròn có tâm I(2; 4) và bán kính R = 1.

Vị trí ban đầu của vật thể là A(2; 5), vị trí kết thúc của vật thể là B(2; 3).

Ta có 2+22=2;  5+32=4 nên I là trung điểm của AB

AB2=222+3522=22=1=R.

Do đó vật thể chuyển động trên đường tròn có tâm I(2; 4), bán kính R = 1 và nhận AB làm đường kính.

Khi t thay đổi trên đoạn [0; 180] thì sin t° thay đổi trên đoạn [0; 1] và cos t° thay đổi trên đoạn [– 1; 1]. Do đó 2 + sin t° ∈ [2; 3] và 4 + cos t° ∈ [3; 5].

Vậy quỹ đạo của vật thể (hay là tập hợp điểm M) là nửa đường tròn đường kính AB vẽ trên nửa mặt phẳng chứa điểm C(3; 0), bờ AB.

Lời giải bài tập Toán 10 Bài 21: Đường tròn trong mặt phẳng tọa độ hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác