Giải Toán 11 trang 13 Tập 1 Chân trời sáng tạo
Với Giải Toán 11 trang 13 Tập 1 trong Bài 1: Góc lượng giác Toán 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 13.
Giải Toán 11 trang 13 Tập 1 Chân trời sáng tạo
Bài 7 trang 13 Toán 11 Tập 1: Trên đường tròn lượng giác hãy biểu diễn các góc lượng giác có số đo có dạng là:
a) ;
b) .
Lời giải:
a) Với k = 0 thì có góc lượng giác có số đo góc là , được biểu diễn bởi điểm M;
Với k = 1 thì có góc lượng giác có số đo góc là , được biểu diễn bởi điểm N;
Với k = 2 thì có góc lượng giác có số đo góc là nên cũng được biểu diễn bởi điểm M;
Với k = 3 thì có góc lượng giác có số đo góc là nên cũng được biểu diễn bởi điểm N.
Vậy với k chẵn thì các góc lượng giác có số đo dạng được biểu diễn bởi điểm M, với k lẻ thì các góc lượng giác có số đo dạng được biểu diễn bởi điểm N khi đó ta có hình vẽ sau:
b) Với k = 0 thì có góc lượng giác có số đo góc là 0, được biểu diễn bởi điểm A;
Với k = 1 thì có góc lượng giác có số đo góc là , được biểu diễn bởi điểm M;
Với k = 2 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm B;
Với k = 3 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm N;
Với k = 4 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm A’;
Với k = 5 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm M’;
Với k = 6 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm B’;
Với k = 7 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm N’;
Với k = 8 thì có góc lượng giác có số đo góc là nên được biểu diễn bởi điểm A;
Vậy các góc lượng giác có số đo dạng được biểu diễn bởi các điểm A, M, B, N, A’, M’, B’, N’. Khi đó ta có hình vẽ sau:
Bài 8 trang 13 Toán 11 Tập 1: Vị trí các điểm B, C, D trên cánh quạt động cơ máy bay trong Hình 16 có thể biểu diễn cho các góc lượng giác nào sau đây?
Lời giải:
+) Xét các góc lượng giác có số đo
Với k chẵn ta có các góc lượng giác có số đo được biểu diễn bởi điểm B;
Với k lẻ ta có các góc lượng giác có số đo được biểu diễn bởi điểm B’(0; – 1).
Vì vậy các điểm B, C, D không thể biểu diễn cho các góc lượng giác có số đo .
+) Xét các góc lượng giác có số đo
Với k = 0 ta có góc lượng giác có số đo được biểu diễn bởi điểm D.
Với k = 1 ta có góc lượng giác có số đo được biểu diễn bởi điểm B.
Với k = 2 ta có góc lượng giác có số đo được biểu diễn bởi điểm C.
Với k = 3 ta có góc lượng giác có số đo được biểu diễn bởi điểm D.
Vì vậy các góc lượng giác có số đo được biểu diễn bởi các điểm B, C, D.
+) Xét các góc lượng giác có số đo
Với k = 0 ta có góc lượng giác có số đo được biểu diễn bởi điểm B.
Với k = 1 ta có góc lượng giác có số đo được biểu diễn bởi điểm M.
Với k = 2 ta có góc lượng giác có số đo được biểu diễn bởi điểm C.
Với k = 3 ta có góc lượng giác có số đo được biểu diễn bởi điểm B’.
Với k = 4 ta có góc lượng giác có số đo được biểu diễn bởi điểm D.
Với k = 5 ta có góc lượng giác có số đo được biểu diễn bởi điểm N.
Với k = 6 ta có góc lượng giác có số đo được biểu diễn bởi điểm B.
Ví vậy các điểm B, C, D không thể biểu diễn cho các góc lượng giác có số đo là .
Bài 9 trang 13 Toán 11 Tập 1: Hải lí là một đơn vị chiều dài hàng hải, được tính bằng độ dài một cung chắn một góc của đường kinh tuyến (Hình 17). Đổi số đo α sang radian và cho biết 1 hải lí bằng khoảng bao nhiêu ki lô mét, biết bán kính trung bình của Trái Đất là 6 371 km. Làm tròn kết quả hàng phần trăm.
Lời giải:
Ta có:
Độ dài cung chắn góc α là: α.R = .6 371 1,85 km.
Vậy 1 hải lí bằng 1,85 km.
Hoạt động khởi động trang 13 Toán 11 Tập 1: Hình bên biểu diễn xích đu IA có độ dài 2m dao động quanh trục IO vuông góc với trục Ox trên mặt đất và A’ là hình chiếu của A lên Ox. Tọa độ s của A’ trên trục Ox được gọi là li độ của A và (IO, IA) = α được gọi là li độ góc của A. Làm cách nào để tính li độ dựa vào li độ góc?
Lời giải:
Kẻ AH vuông góc với IO tại H
Xét tam giác AHI vuông tại H, có:
AH = sinα . IA = 2sinα (m).
AH cũng chính là li độ của A nên s = 2sinα.
Hoạt động khám phá 1 trang 13 Toán 11 Tập 1: Trong Hình 1, M và N là điểm biểu diễn của các góc lượng giác và trên đường tròn lượng giác. Xác định tọa độ của M và N trong hệ trục tọa độ Oxy.
Lời giải:
Gọi H, K lần lượt là hình chiếu của điểm M xuống trục Ox và Oy; gọi E, F lần lượt là hình chiếu của điểm N trên trục Ox và Oy.
Đặt (OA, OM) = , (OA, ON) = .
+) Xét tam giác MHO vuông tại H, có:
MH = sin.MO = sin
Ta có nên sin = sin.
⇒ MH = sin = sinα.
Mà MH = OK nên OK = sinα hay tung độ điểm M bằng sinα.
Ta lại có: OH = cos.MO = cos
Mà nên cos = -cos
⇒ OH = -cos = – cosα do đó hoành độ của điểm M bằng cosα.
Vậy tọa độ điểm M là (cosα; sinα) = .
+) Xét tam giác ONE vuông tại E, có:
NE = sin.ON = sin
Mà = -
⇒ NE = – sinβ.
Mà NE = OF nên OF = – sinβ do đó tung độ điểm N bằng sinβ.
Ta lại có: OE = cos.ON = cos
⇒ OE = cosβ nên hoành độ của điểm M bằng cosβ.
Vậy tọa độ điểm N là
(cosβ; sinβ) =
Lời giải bài tập Toán 11 Bài 1: Góc lượng giác hay khác:
Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải SBT Toán 11 Chân trời sáng tạo
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST