Giải Toán 11 trang 43 Tập 1 Chân trời sáng tạo

Với Giải Toán 11 trang 43 Tập 1 trong Bài tập cuối chương 1 Toán 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 43.

Giải Toán 11 trang 43 Tập 1 Chân trời sáng tạo

Quảng cáo

Bài 10 trang 43 Toán 11 Tập 1: Nghiệm dương nhỏ nhất của phương trình sinx+π6- sin2x = 0 là bao nhiêu?

Lời giải:

Xét phương trình sinx+π6- sin2x = 0

sin2x = sinx+π6

Bài 10 trang 43 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Với họ nghiệm x=π6+k2π có nghiệm dương bé nhất là x=π6 khi k = 0.

Với họ nghiệm x=5π18+k2π3 có nghiệm dương bé nhất là x=5π18 khi k = 0.

Quảng cáo

Vậy nghiệm dương bé nhất của phương trình đã cho là x=π6.

Bài 11 trang 43 Toán 11 Tập 1: Giải các phương trình sau:

a) sin2x + cos3x = 0;

b) sinxcosx = 24;

c) sinx + sin2x = 0.

Lời giải:

a) sin2x + cos3x = 0

⇔ sin2x = sinπ23x

Bài 11 trang 43 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Quảng cáo

Vậy phương trình có tập nghiệm là S = π10+k2π5;π2+k2π,k.

b) sinxcosx = 24

sin2x = 22

sin2x = sinπ4

Bài 11 trang 43 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Vậy tập nghiệm của phương trình là S = π8+kπ;3π8+kπ,k.

Quảng cáo

c) sinx + sin2x = 0.

⇔ sinx = – sin2x

⇔ sinx = sin(– 2x)

Bài 11 trang 43 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Vậy tập nghiệm của phương trình là: S = k2π3;π+k2π,k.

Bài 12 trang 43 Toán 11 Tập 1: Độ sâu h(m) của mực nước ở một cảng biển vào thời điểm t (giờ) sau khi thủy triều lên lần đầu tiên trong ngày được tính xấp xỉ bởi công thức h(t) = 0,8cos0,5t + 4.

(Theo https://noc.ac.uk/files/documents/business/an-introduction-to-tidal-modelling.pdf)

a) Độ sâu của nước vào thời điểm t = 2 là bao nhiêu mét?

b) Một con tàu cần mực nước sâu tối thiểu 3,6m để có thể di chuyển vào cảng an toàn. Dựa vào đồ thị của hàm số côsin, hãy cho biết trong vòng 12 tiếng sau khi thủy triều lên lần đầu tiên, ở những thời điểm t nào tàu có thể hạ thủy. Làm tròn kết quả đến hàng phần trăm.

Lời giải:

a) Tại thời điểm t = 2 độ sâu của nước là: h(2) = 0,8cos0,5.2 + 4 ≈ 4,43 m.

Vậy độ sâu của nước ở thời điểm t = 2 là khoảng 4,43 m.

b) Các thời điểm để mực nước sâu là 3,6m tương ứng với phương trình 0,8cos0,5t + 4 = 3,6

⇔ 0,8cos0,5t = – 0,4

⇔ cos0,5t = – 0,5

⇔ cos0,5t = cos2π3

⇔ 0,5t = ±2π3+k2π,k

⇔ t = ±4π3+k2π,k

+) Với t=4π3+k2π,k, trong 12 tiếng ta có các thời điểm

04π3+k2π1223k1,24

k nên k{0;1}.

+) Với t=4π3+k2π,k, trong 12 tiếng ta có các thời điểm

04π3+k2π1223k1,24

Mà kZ nên k=1.

Vậy tại các thời điểm t=4π3,t=10π3,t=2π3 giờ thì tàu có thể hạ thủy.

Bài 13 trang 43 Toán 11 Tập 1: Cho vận tốc v (cm/s) của một con lắc đơn theo thời gian t (giây) được cho bởi công thức v = -3sin1,5t+π3.

(Theo https://www.britannica.com/science/simple-harmonic-motion)

Xác định các thời điểm t mà tại đó:

a) Vận tốc con lắc đạt giá trị lớn nhất;

b) Vận tốc con lắc bằng 1,5 cm/s.

Lời giải:

a) Vì 1sin1,5t+π31 nên 33sin1,5t+π33

Vận tốc con lắc đạt giá trị lớn nhất khi sin1,5t+π3 = -1

Bài 13 trang 43 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Vì vậy vận tốc con lắc đạt giá trị lớn nhất tại các thời điểm t1=7π9; t2=19π9; t3=31π9; ...

b) Để vận tốc con lắc bằng 1,5 cm/s thì v = -3sin1,5t+π3 = 1,5

sin1,5t+π3=12

Dựa vào đồ thị hàm số sin ta có:

Bài 13 trang 43 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Vậy sau các thời điểm t1=5π9, t2=π, t3=17π9, t4=7π3,... thì vận tốc của con lắc đạt 1,5 cm/s.

Bài 14 trang 43 Toán 11 Tập 1: Trong Hình 1, cây xanh AB nằm ở trên đường xích đạo được trồng vuông góc với mặt đất và có chiều cao 5m. Bóng của cây là BE. Vào nghày xuân phân và hạ phân, điểm E di chuyển trên đường thẳng Bx. Góc thiên đỉnh θs = (AB, AE) phụ thuộc vào vị trí của Mặt Trời và thay đổi theo thời gian trong ngày theo công thức θs(t) = π12t12 rad với t là thời gian trong ngày (theo đơn vị giờ, 6 < t < 18) .

(Theo https://www.sciencedirect.com/topics/engineering/solar-hour-angle)

a) Viết hàm số biểu diễn tọa độ của điểm E trên trục Bx theo t.

b) Dựa vào đồ thị của hàm số tang, hãy xác định các thời điểm mà tại đó bóng cây phủ qua vị trí tường rào N biết N nằm trên trục Bx với tọa độ xN = – 4 (m). Làm tròn kết quả đến hàng phần mười.

Bài 14 trang 43 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Xét tam giác ABE vuông tại B, có:

tanθs(t)=BEABBE=5tanπ12t12.

b) Đồ thị của hàm số θs=5tanπ12t12

Bài 14 trang 43 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Dựa vào đồ thị hàm số để θs=5tanπ12t12<4 và 6 < t < 18 suy ra các thời điểm để bóng cây phủ qua hàng rào N là 6 < t< 9,4.

Lời giải bài tập Toán 11 Bài tập cuối chương 1 hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Chân trời sáng tạo khác
Tài liệu giáo viên