Giải Toán 12 trang 34 Tập 2 Chân trời sáng tạo

Với Giải Toán 12 trang 34 Tập 2 trong Bài 1: Phương trình mặt phẳng Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 34.

Giải Toán 12 trang 34 Tập 2 Chân trời sáng tạo

Quảng cáo

Thực hành 2 trang 34 Toán 12 Tập 2: Cho mặt phẳng (Q) đi qua ba điểm A(1; 1; 1), B(−1; 1; 5), C(10; 7; −1). Tìm cặp vectơ chỉ phương và một vectơ pháp tuyến của (Q).

Lời giải:

Ta có AB=2;0;4,AC=9;6;2 là cặp vectơ chỉ phương của mặt phẳng (Q).

AB,AC=0462;4229;209624;32;12

Do đó mặt phẳng (Q) nhận n=14AB,AC=6;8;3 làm một vectơ pháp tuyến.

Vận dụng 2 trang 34 Toán 12 Tập 2: Cho biết hai vectơ a=2;1;1, b=1;2;0 có giá lần lượt song song với ngón trỏ và ngón giữa của bàn tay trong Hình 5. Tìm vectơ n có giá song song với ngón cái. (Xem như ba ngón tay nói trên tạo thành ba đường thẳng đôi một vuông góc).

Vận dụng 2 trang 34 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Quảng cáo

Lời giải:

Ta có a,b=1120;1201;2112=2;1;5.

Vậy n=a,b=2;1;5 có giá song song với ngón cái.

Hoạt động khám phá 3 trang 35 Toán 12 Tập 2: Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M0(1; 2; 3) và nhận n=7;5;2 làm vectơ pháp tuyến. Gọi M(x; y; z) là một điểm tùy ý trong không gian. Tính tích vô hướng n.M0M theo x, y, z.

Quảng cáo

Hoạt động khám phá 3 trang 35 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Ta có M0M=x1;y2;z3.

n.M0M=7x1+5y2+2z3 = 7x + 5y + 2z – 23.

Quảng cáo

Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay khác:

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Chân trời sáng tạo khác