Giải Toán 7 trang 69 Tập 2 Kết nối tri thức
Với Giải Toán 7 trang 69 Tập 2 trong Bài 33: Quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 7 dễ dàng làm bài tập Toán 7 trang 69.
Giải Toán 7 trang 69 Tập 2 Kết nối tri thức
Bài 9.10 trang 69 Toán 7 Tập 2: Cho các bộ ba đoạn thẳng có độ dài như sau:
a) 2 cm, 3 cm, 5 cm.
b) 3 cm, 4 cm, 6 cm.
c) 2 cm, 4 cm, 5 cm.
Lời giải:
a) Ta có 2 + 3 = 5 nên bộ ba đoạn thẳng có độ dài 2 cm, 3 cm, 5 cm không phải độ dài ba cạnh của tam giác.
b) Ta có 3 < 4 + 6; 4 < 3 + 6 và 6 < 3 + 4 nên bộ ba đoạn thẳng có độ dài 3 cm, 4 cm, 6 cm có thể là độ dài ba cạnh của tam giác.
Sử dụng thước thẳng và compa, ta có hình như sau:
c) Ta có 2 < 4 + 5 và 4 < 2 + 5 và 5 < 2 + 4 nên bộ ba đoạn thẳng có độ dài 2 cm, 4 cm, 5 cm có thể là độ dài ba cạnh của tam giác.
Sử dụng thước thẳng và compa, ta có hình như sau:
Bài 9.11 trang 69 Toán 7 Tập 2:
a) Cho tam giác ABC có AB = 1 cm và BC = 7 cm. Hãy tìm độ dài cạnh CA biết rằng đó là một số nguyên (cm).
b) Cho tam giác ABC có AB = 2 cm, BC = 6 cm và BC là cạnh lớn nhất. Hãy tìm độ dài cạnh CA biết rằng đó là một số nguyên (cm).
Lời giải:
a) Áp dụng bất đẳng thức tam giác vào tam giác ABC ta có:
BC - AB < CA < BC + AB
hay 6 < CA < 8.
Mà độ dài CA là một số nguyên nên CA = 7 cm.
b) Áp dụng bất đẳng thức tam giác vào tam giác ABC ta có:
BC - AB < CA < BC + AB
hay 4 < CA < 8.
Do BC là cạnh lớn nhất trong tam giác nên CA < BC.
Do đó 4 < CA < 6.
Mà độ dài cạnh CA là một số nguyên nên CA = 5 cm.
Bài 9.12 trang 69 Toán 7 Tập 2: Cho điểm M nằm bên trong tam giác ABC. Gọi N là giao điểm của đường thẳng AM và cạnh BC (H.9.18).
a) So sánh MB với MN + NB, từ đó suy ra MA + MB < NA + NB.
b) So sánh NA với CA + CN, từ đó suy ra NA + NB < CA + CB.
c) Chứng minh MA + MB < CA + CB.
Lời giải:
a) Áp dụng bất đẳng thức tam giác vào ∆MNB có:
MB < MN + NB do đó MA + MB < MA + MN + NB.
hay MA + MB < NA + NB.
b) Áp dụng bất đẳng thức tam giác vào ∆NAC có:
NA < CA + CN do đó NA + NB < CA + CN + NB.
hay NA + NB < CA + CB.
c) Do MA + MB < NA + NB và NA + NB < CA + CB nên
MA + MB < NA + NB < CA + CB.
Do đó MA + MB < CA + CB.
Bài 9.13 trang 69 Toán 7 Tập 2: Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng AD nhỏ hơn nửa chu vi tam giác ABC
Lời giải:
Lời giải bài tập Toán 7 Bài 33: Quan hệ giữa ba cạnh của một tam giác hay khác:
Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Toán 7 Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
Toán 7 Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Kết nối tri thức
- Giải SBT Toán 7 Kết nối tri thức
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Kết nối tri thức với cuộc sống (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT