Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) - Chân trời sáng tạo

Với tóm tắt lý thuyết Toán 8 Bài 4: Hình bình hành – Hình thoi sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 8 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 8.

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) - Chân trời sáng tạo

Quảng cáo

Lý thuyết Hình bình hành – Hình thoi

1. Hình bình hành

1.1. Định nghĩa hình bình hành

Định nghĩa: Hình bình hành là tứ giác có các cạnh đối song song.

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

ABCD là hình bình hành có AB // CD và AD // BC.

2.2. Tính chất của hình bình hành

Định lí:

Trong hình bình hành:

– Các cạnh đối bằng nhau.

– Các góc đối bằng nhau.

– Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Quảng cáo

Ví dụ 1. Cho hình bình hành ABCD, AC cắt BD tại E. Hãy chỉ ra các đoạn thẳng và các góc bằng nhau có trong hình.

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

Hướng dẫn giải

Trong hình bình hành ABCD, ta có:

– Các cạnh đối bằng nhau nên: AD = BC, AB = DC.

– Các góc đối bằng nhau nên: BAD^=BCD^, ABC^=ADC^.

– Hai đường chéo cắt nhau tại trung điểm mỗi đường nên: EA = EC, EB = ED.

– Theo tính chất của hai đường thẳng song song, các cặp góc so le trong bằng nhau:

• Do AB // CD nên BAC^=ACD^, ABC^=ADC^.

• Do AD // BC nên BCA^=CAD^ , DBC^=BDA^ .

– Các cặp góc đối đỉnh bằng nhau: AEB^=DEC^ , AED^=BEC^.

– Các góc bẹt bằng nhau: AEC^=BED^.

Quảng cáo

2.3. Dấu hiệu nhận biết hình bình hành

Ta có các dấu hiệu nhận biết một tứ giác là hình bình hành như sau:

(1) Tứ giác có các cạnh đối song song là hình bình hành.

(2) Tứ giác có các cạnh đối bằng nhau là hình bình hành.

(3) Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

(4) Tứ giác có các góc đối bằng nhau là hình bình hành.

(5) Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.

Ví dụ 2. Trong các tứ giác dưới đây, tứ giác nào là hình bình hành. Vì sao?

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

Hướng dẫn giải

– Tứ giác PONQ có hai đường chéo PN và OQ cắt nhau tại R là trung điểm của mỗi đường chéo nên tứ giác PONQ là hình bình hành.

– Tứ giác FIHG có các cạnh đối FI = GH và FG = IH nên tứ giác FIGH là hình bình hành.

– Tứ giác JKML có góc đối J^M^nên tứ giác JKML không phải là hình bình hành.

– Tứ giác SUVT có các góc đối bằng nhau: S^=V^, T^=U^nên tứ giác SUVT là hình bình hành.

Quảng cáo

2. Hình thoi

2.1. Định nghĩa hình thoi

Định nghĩa: Hình thoi là tứ giác có bốn cạnh bằng nhau.

Ví dụ 3. Tứ giác ABCD có phải là hình thoi không? Vì sao?

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

Hướng dẫn giải

Tứ giác ABCD có bốn cạnh bằng nhau: AB = BC = CD = DA nên tứ giác ABCD là hình thoi.

2.2. Tính chất của hình thoi

Nhận xét: Hình thoi cũng là hình bình hành nên hình thoi có đầy đủ tính chất của hình bình hành.

Định lí

Trong hình thoi:

– Hai đường chéo vuông góc với nhau.

– Hai đường chéo là các đường phân giác của các góc của hình thoi.

Ví dụ 4. Cho hình thoi HEFG có Z là giao điểm hai đường chéo.

a) Biết HEF^=120° . Tính HEZ^ .

b) Biết EH = 10 cm, HF = 16 cm. Tính EZ.

Hướng dẫn giải

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

a) Do HEFG là hình thoi nên EG là phân giác của HEF^

Do đó HEZ^=HEF^2=120°2=60° .

b) Do HEFG là hình thoi nên hai đường chéo của nó vuông góc với nhau tại trung trung điểm của mỗi đường.

Khi đó ∆EZH là tam giác vuông tại Z và HZ=12HF=12.16=8(cm).

Áp dụng định lí Pythagore vào tam giác vuông EZH ta có:

EZ=EH2HZ2=10282=36=6(cm).

2.3. Dấu hiệu nhận biết hình thoi

Ta có dấu hiệu nhận biết một tứ giác là hình thoi như sau:

(1) Hình bình hành có hai cạnh kề bằng nhau là hình thoi.

(2) Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

(3) Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.

Ví dụ 5. Chứng minh mỗi hình bình hành dưới đây là hình thoi.

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

Hướng dẫn giải:

Áp dụng dấu hiệu nhận biết hình thoi ta có:

– Hình bình hành ABCD có hai cạnh kề bằng nhau (AB = BC) nên là hình thoi.

– Hình bình hành EHGF có đường chéo EG vuông góc với HF tại Z nên là hình thoi.

– Hình bình hành MNPQ có QMP^=NMP^hay đường chéo MP là đường phân giác của góc QMN^nên hình bình hành MNPQ là hình thoi.

Bài tập Hình bình hành – Hình thoi

Bài 1. Hình bình hành ABCD có B^=65°. Tính các góc A, C, D.

Hướng dẫn giải

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

ABCD là hình bình hành nên ta có: và (tính chất hình bình hành)

Áp dụng định lí tổng các góc của một tứ giác ta có: A^+B^+C^+D^=360°

Suy ra 2A^=360°2B^=360°2.65°=230°.

Do đó A^=C^=230°2=115°.

Vậy A^=C^=115°D^=65° .

Bài 2. Cho tam giác GHJ cân tại G. Đường trung tuyến kẻ từ G của tam giác cắt HJ tại K. Lấy điểm I trên tia GK sao cho KG = KI. Chứng minh GHIJ là hình thoi.

Hướng dẫn giải

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

• Ta có GK là trung tuyến của tam giác GHJ nên K là trung điểm của HJ.

Do KG = KI nên K là trung điểm của GI.

Tứ giác GHIJ có hai đường chéo GI và HJ cắt nhau tại trung điểm K của mỗi đường nên là hình bình hành.

• ∆GHJ cân tại G nên đường trung tuyến GK đồng thời là đường cao tương ứng với cạnh HJ nên GI ⊥ HJ.

Hình bình hành GHIJ có hai đường chéo GI và HJ vuông góc với nhau nên là hình thoi.

Bài 3. Cho hình bình hành MNPQ (MQ < MN). Từ M kẻ đường phân giác của QMN^ cắt QP tại E, từ P kẻ đường phân giác của NPQ^ cắt MN tại F.

a) Chứng minh ∆MQE là tam giác cân.

b) Tứ giác MEPF là hình gì? Tại sao?

Hướng dẫn giải

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

a) Ta có MNPQ là hình bình hành nên MN // PQ

Do đó QEM^=EMN^ (so le trong).

ME là đường phân giác của QMN^ nên QME^=EMN^=12QMN^

Suy ra .

Vậy tam giác MQE là tam giác cân tại Q.

b) Do ME là đường phân giác của NPQ^ nên QME^=EMN^=12QMN^

Do PF là đường phân giác của NPQ^ nên NPF^=QPF^=12NPQ^

QMN^=NPQ^ (hai góc đối của hình bình hành)

Suy ra EMN^=QPF^ hay EMF^=EPF^ .

Mặt khác, MN // PQ nên EMF^=MEQ^ (so le trong)

Do đó MEQ^=EPF^ , mà hai góc này ở vị trí so le trong nên ME // PF

Xét tứ giác MEPF có ME // PF và MF // PE nên là hình bình hành.

Bài 4. Cho hình thoi ABCD có B là góc tù. Từ B hạ BM ⊥ AD, BN ⊥ CD. Từ D hạ DP ⊥ AB, DQ ⊥ BC. Gọi H là giao điểm của MB và PD, K là giao điểm của BN và DQ, O là giao điểm của AC và BD.

a) Chứng minh H là trực tâm của tam giác ABD.

b) Chứng minh A, H, K, C thẳng hàng.

c) Chứng minh PDQ^=MBN^ .

d) Chứng minh PHM^=QKN^ .

e) Chứng minh tứ giác BHDK là hình thoi.

Hướng dẫn giải

Hình bình hành – Hình thoi (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

a) Tam giác ABD có hai đường cao BM, DP cắt nhau tại H nên H là trực tâm của tam giác.

b) ABCD là hình thoi nên AC ⊥ BD tại O, do đó A, O, C thẳng hàng (1)

Do H là trực tâm của DABD suy ra AH ⊥ BD tại O nên H ∈ AO (2)

Chứng minh tương tự câu a ta có K là trực tâm DBCD

Suy ra CK ⊥ BD tại O nên K ∈ CO (3)

Từ (1), (2) và (3) suy ra A, H, K, C thẳng hàng.

c) Vì ABCD là hình thoi nên hai đường chéo AC, BD vuông góc với nhau tại trung điểm của mỗi đường

Suy ra AC là đường trung trực của BD

Do đó HB = HD nên DHBD cân tại H, suy ra B^1=D^1

Tương tự, B^2=D^2

Suy ra B^1+B^2=D^1+D^2 hay MBN^=PDQ^.

d) ABCD là hình thoi nên BAD^=BCD^

Tứ giác APHM có PHM^=360°90°90°BAD^

Tứ giác CQKN có QKN^=360°90°90°BCD^

Suy ra PHM^=QKN^ .

e) Ta có: A^1+H^2=90°C^1+K^2=90°

A^1=C^1 nên H^2=K^2

Lại có H^1=H^2 (đối đỉnh) và K^1=K^2 (đối đỉnh) nên H^1=K^1

Suy ra DBHK cân tại B, nên BH = BK

Mà BH = DH và BK = DK nên BH = HD = CK = KB

Suy ra tứ giác BHDK là hình thoi.

Học tốt Hình bình hành – Hình thoi

Các bài học để học tốt Hình bình hành – Hình thoi Toán lớp 8 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 8 Chân trời sáng tạo hay khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 8, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán 8 hay nhất, chi tiết của chúng tôi được biên soạn bám sát sgk Toán 8 Chân trời sáng tạo (Tập 1 & Tập 2) (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 Chân trời sáng tạo khác
Tài liệu giáo viên