Cách xác định tập hợp



Chuyên đề: Tập hợp và các phép toán trên tập hợp

Cách xác định tập hợp

Phương pháp giải

1: Với tập hợp A, ta có 2 cách:

Cách 1: liệt kê các phần tử của A: A={a1; a2; a3;..}

Cách 2: Chỉ ra tính chất đặc trưng cho các phần tử của A

2:Tập hợp con

Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì ta nói A là một tập hợp con của B, kí hiệu là A ⊂ B.

A ⊂ B ⇔ ∀x : x ∈ A ⇒ x ∈ B.

A ⊄ B ⇔ ∀x : x ∈ A ⇒ x ∉ B.

Tính chất:

1) A ⊂ A với mọi tập A.

2) Nếu A ⊂ B và B ⊂ C thì A ⊂ C.

3) ∅ ⊂ A với mọi tập hợp A.

Ví dụ minh họa

Ví dụ 1: Viết mỗi tập hợp sau bằng cách liệt kê các phần tử của nó:

a) A={x ∈ R|(2x - x2 )(2x2 - 3x - 2)=0}.

b) B={n ∈ N|3 < n2 < 30}.

Hướng dẫn:

a) Ta có:

(2x - x2 )(2x2 - 3x - 2) =0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

b) 3 < n2 < 30 ⇒ √3 < |n| < √30

Do n ∈ N nên n ∈ {2;3;4;5}

⇒ B = {2;3;4;5}.

Ví dụ 2: Viết mỗi tập hợp sau bằng cách chỉ rõ tính chất đặc trưng cho các phần tử của nó:

a) A = {2; 3; 5; 7}

b) B = {-3; -2; -1; 0; 1; 2; 3}

c) C = {-5; 0; 5; 10; 15}.

Hướng dẫn:

a) A là tập hợp các số nguyên tố nhỏ hơn 10.

b) B là tập hơp các số nguyên có giá trị tuyệt đối không vượt quá 3.

B={x ∈ Z||x| ≤ 3}.

c) C là tập hợp các số nguyên n chia hết cho 5, không nhỏ hơn -5 và không lớn hơn 15.

C={n ∈ Z|-5 ≤ n ≤ 15; n ⋮ 5}.

Ví dụ 3: Cho tập hợp A có 3 phần tử. Hãy chỉ ra số tập con của tập hợp A.

Hướng dẫn:

Giả sử tập hợp A={a;b;c}. Các tập hợp con của A là:

∅ ,{a},{b},{c},{a;b},{b;c},{c;a},{a;b;c}

Tập A có 8 phần tử

Chú ý: Tổng quát, nếu tập A có n phần tử thì số tập con của tập A là 22 phần tử.

Ví dụ 4: Cho hai tập hợp M={8k + 5 |k ∈ Z}, N={ 4l + 1 | l ∈ Z}. Khẳng định nào sau đây là đúng?

A. M ⊂ N B. N ⊂ M
C. M=N D. M= ∅ ,N= ∅

Hướng dẫn:

Rõ ràng ta có: M ≠ ∅ ; N ≠ ∅

Giả sử x là một phần tử bất kì của tập M, ta có x = 8k + 5 (k ∈ Z)

Khi đó, ta có thể viết x = 8k + 5 = 4(2k + 1) + 1 = 4l + 1 với l = 2k + 1 ∈ Z do k ∈ Z. Suy ra x ∈ N.

Vậy ∀x ∈ M ⇒ x ∈ N hay M ⊂ N.

Mặt khác 1 ∈ N nhưng 1 ∉ M nên N ⊄ M. Từ đó, suy ra M ≠ N

Vậy M ⊂ N.

Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 10 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 10 và Hình học 10.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


tap-hop-va-cac-phep-toan-tren-tap-hop.jsp