Cách xác định, cách viết tập hợp (hay, chi tiết)
Bài viết Cách xác định, cách viết tập hợp với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách xác định, cách viết tập hợp.
Cách xác định, cách viết tập hợp hay, chi tiết
Phương pháp giải
1: Với tập hợp A, ta có 2 cách:
Cách 1: liệt kê các phần tử của A: A={a1; a2; a3;..}
Cách 2: Chỉ ra tính chất đặc trưng cho các phần tử của A
2:Tập hợp con
Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì ta nói A là một tập hợp con của B, kí hiệu là A ⊂ B.
A ⊂ B ⇔ ∀x : x ∈ A ⇒ x ∈ B.
A ⊄ B ⇔ ∀x : x ∈ A ⇒ x ∉ B.
Tính chất:
1) A ⊂ A với mọi tập A.
2) Nếu A ⊂ B và B ⊂ C thì A ⊂ C.
3) ∅ ⊂ A với mọi tập hợp A.
Ví dụ minh họa
Ví dụ 1: Viết mỗi tập hợp sau bằng cách liệt kê các phần tử của nó:
a) A={x ∈ R|(2x - x2 )(2x2 - 3x - 2)=0}.
b) B={n ∈ N|3 < n2 < 30}.
Lời giải:
a) Ta có:
(2x - x2 )(2x2 - 3x - 2) =0 ⇔
⇔
⇒
b) 3 < n2 < 30 ⇒ √3 < |n| < √30
Do n ∈ N nên n ∈ {2;3;4;5}
⇒ B = {2;3;4;5}.
Ví dụ 2: Viết mỗi tập hợp sau bằng cách chỉ rõ tính chất đặc trưng cho các phần tử của nó:
a) A = {2; 3; 5; 7}
b) B = {-3; -2; -1; 0; 1; 2; 3}
c) C = {-5; 0; 5; 10; 15}.
Lời giải:
a) A là tập hợp các số nguyên tố nhỏ hơn 10.
b) B là tập hơp các số nguyên có giá trị tuyệt đối không vượt quá 3.
B={x ∈ Z||x| ≤ 3}.
c) C là tập hợp các số nguyên n chia hết cho 5, không nhỏ hơn -5 và không lớn hơn 15.
C={n ∈ Z|-5 ≤ n ≤ 15; n ⋮ 5}.
Ví dụ 3: Cho tập hợp A có 3 phần tử. Hãy chỉ ra số tập con của tập hợp A.
Lời giải:
Giả sử tập hợp A={a;b;c}. Các tập hợp con của A là:
∅ ,{a},{b},{c},{a;b},{b;c},{c;a},{a;b;c}
Tập A có 8 phần tử
Chú ý: Tổng quát, nếu tập A có n phần tử thì số tập con của tập A là 22 phần tử.
Ví dụ 4: Cho hai tập hợp M={8k + 5 |k ∈ Z}, N={ 4l + 1 | l ∈ Z}. Khẳng định nào sau đây là đúng?
A. M ⊂ N | B. N ⊂ M |
C. M=N | D. M= ∅ ,N= ∅ |
Lời giải:
Rõ ràng ta có: M ≠ ∅ ; N ≠ ∅
Giả sử x là một phần tử bất kì của tập M, ta có x = 8k + 5 (k ∈ Z)
Khi đó, ta có thể viết x = 8k + 5 = 4(2k + 1) + 1 = 4l + 1 với l = 2k + 1 ∈ Z do k ∈ Z. Suy ra x ∈ N.
Vậy ∀x ∈ M ⇒ x ∈ N hay M ⊂ N.
Mặt khác 1 ∈ N nhưng 1 ∉ M nên N ⊄ M. Từ đó, suy ra M ≠ N
Vậy M ⊂ N.
Bài tập tự luyện
Bài 1. Viết tập hợp sau dưới dạng liệt kê các phần tử: A = .
Hướng dẫn giải
Ta có x3 - 3x2 = 0 ⇔ x = 0 và x = 3.
Do đó A = {0; 3}.
Bài 2. Viết tập hợp sau dưới dạng liệt kê các phần tử: A = .
Hướng dẫn giải
Ta có
Do đó A = {2; 3; 4}.
Bài 3. Viết tập hợp sau dưới dạng liệt kê các phần tử: A =
Hướng dẫn giải
Ta có 2x2 - 5x + 3 = 0 nên hoặc x = 1
Do đó A = .
Bài 4. Viết tập hợp sau dưới dạng liệt kê các phần tử: A = .
Hướng dẫn giải
Ta có x3 – x = 0
x(x2 – 1) = 0
x(x + 1)(x – 1) = 0
x = 0 hoặc x = –1 hoặc x = 1
Do đó A = {-1; 0; 1}.
Bài 5. Viết tập hợp sau dưới dạng liệt kê các phần tử: A = .
Hướng dẫn giải
A = {-3; -2; -1; 0; 1; 2; 3; 4; 5}.
Bài 6. Viết tập hợp sau dưới dạng liệt kê các phần tử: A = .
Bài 7. Viết tập hợp sau dưới dạng liệt kê các phần tử: A = .
Bài 8. Viết tập hợp sau dưới dạng liệt kê các phần tử:
A = .
Bài 9. Viết tập hợp sau dưới dạng liệt kê các phần tử: A = .
Bài 10. Viết tập hợp sau dưới dạng liệt kê các phần tử:
A = .
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Lý thuyết Tập hợp và các phép toán trên tập hợp
- Dạng 2: Các phép toán trên tập hợp
- Dạng 3: Giải toán bằng biểu đồ Ven
- Bài tập Tập hợp và các phép toán trên tập hợp (có đáp án)
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều