Toán 7 Ôn tập chương 3 (Câu hỏi ôn tập - Bài tập)
Toán 7 Ôn tập chương 3 (Câu hỏi ôn tập - Bài tập)
Trả lời
a) AB ... AH; AC ... AH.
b) Nếu HB ... HC thì AB ... AC.
c) Nếu AB ... AC thì HB ... HC.
Trả lời
a) AB > AH; AC > AH.
b) Nếu HB > HC thì AB > AC.
hoặc có thể HB < HC thì AB < AC.
c) Nếu AB > AC thì HB > HC.
hoặc có thể AB < AC thì HB < HC.
3. Cho tam giác DEF. Hãy viết bất đẳng thức về quan hệ giữa các cạnh của tam giác này.
Trả lời
Với ΔDEF ta có các bất đẳng thức và quan hệ giữa các cạnh là:
DE < EF + DF
DF < EF + DE
EF < DE + DF
DF - EF < DE < DF + EF (với DF > EF)
4. Hãy ghép hai ý ở hai cột để được khẳng định đúng: ...
Trả lời
Ghép a-d' ; b –a', c-b', d-c'
Trong một tam giác
a - d' đường phân giác xuất phát từ đỉnh A - là đoạn thẳng có hai mút là đỉnh A và giao điểm của cạnh BC với tia phân giác của góc A.
b - a' đường trung trực ứng với cạnh BC - là đường vuông góc với cạnh BC tại trung điểm của nó.
c - b' đường cao xuất phát từ đỉnh A - là đoạn vuông góc kẻ từ A đến đường thẳng BC.
d - c' đường trung tuyến xuất phát từ đỉnh A - là đoạn thẳng nối A với trung điểm của cạnh BC.
5. Cũng với yêu cầu như ở câu 4. ...
Trả lời
Ghép a-b', b-a', c-d', d-c'
Trong một tam giác
a - b' trọng tâm - là điểm chung của ba đường trung tuyến
b - a' trực tâm - là điểm chung của ba đường cao
c - d' điểm (nằm trong tam giác) cách đều ba cạnh - là điểm chung của ba đường phân giác
d - c' điểm cách đều ba đỉnh - là điểm chung của ba đường trung trực
6. a) Hãy nêu tính chất trọng tâm của một tam giác; các cách xác định trọng tâm.
b) Bạn Nam nói: "Có thể vẽ được một tam giác có trọng tâm ở bên ngoài tam giác". Bạn Nam nói đúng hay sai? Tại sao?
Trả lời
a) - Trọng tâm của một tam giác có tính chất như sau:
"Trọng tâm cách đỉnh một khoảng bằng 2/3 độ dài đường trung tuyến đi qua đỉnh đó."
- Các cách xác định trọng tâm:
+ Cách 1: Vẽ hai đường trung tuyến ứng với hai cạnh tùy ý, rồi xác định giao điểm của hai đường trung tuyến đó.
+ Cách 2: Vẽ một đường trung tuyến của tam giác. Chia độ dài đường trung tuyến thành ba phần bằng nhau rồi xác định một điểm cách đỉnh hai phần bằng nhau.
b) Không thể vẽ được một tam giác có trọng tâm ở bên ngoài tam giác vì đường trung tuyến qua một đỉnh của tam giác và trung điểm một cạnh trong tam giác nên đường trung tuyến phải nằm giữa hai cạnh của một tam giác tức nằm ở bên trong của một tam giác nên ba đường trung tuyến cắt nhau chỉ có thể nằm bên trong của tam giác.
Trả lời
Tam giác có ít nhất một đường trung tuyến đồng thời là đường phân giác, đường trung trực, đường cao là tam giác cân, tam giác vuông cân, tam giác đều.
Trả lời
Tam giác có trọng tâm đồng thời là trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh là tam giác đều.
Xem thêm các bài giải bài tập Toán lớp 7 Bài ôn tập chương 3 phần hình học khác:
a) Hãy so sánh góc ADC và góc AEB.
b) Hãy so sánh các đoạn thẳng AD và AE.
Lời giải:
b) ΔAED có:
⇒ AE < AD hay AD > AE
Bài 64 trang 87 sgk Toán lớp 7 Tập 2 : Gọi MH là đường cao của tam giác MNP. Chứng minh rằng:
(yêu cầu xét hai trường hợp: khi góc N nhọn và khi góc N tù).
Lời giải:
+ So sánh NH và PH
MH là đường cao của ΔMNP ⇒ H là hình chiếu của M trên đường thẳng NP.
⇒ NH là hình chiếu của đường xiên NM trên đường thẳng NP
PH là hình chiếu của đường xiên MP trên đường thẳng NP.
Mà NM < PM ⇒ NH < PH (đường xiên nào lớn hơn thì hình chiếu lớn hơn).
• TH1: Xét ΔMNP có góc N nhọn
⇒ góc P nhọn (vì MN < MP nên ).
⇒ H nằm giữa N và P.
• TH2: Xét ΔMNP có góc N tù
suy ra H nằm ngoài cạnh NP.
(vì giả sử H nằm giữa N và P thì ΔMNH có ).
Lại có HN < HP nên N nằm giữa H và P
⇒ Tia MN ở giữa hai tia MH và MP ⇒
Lời giải:
Trong một tam giác, độ dài một cạnh lớn hơn hiệu và nhỏ hơn tổng của hai cạnh còn lại.
Vậy nên với năm đoạn thẳng có độ dài 1cm, 2cm, 3cm, 4cm, 5cm ta dựng được tam giác với ba cạnh là các đoạn thẳng có độ dài là:
+ Bộ ba 2cm, 3cm, 4cm (3-2 < 4 < 3+2)
Dựng đoạn thẳng bằng 4cm.
Từ hai đầu đoạn thẳng dựng các cung tròn bán kính lần lượt 2cm và 3cm.
Hai cung tròn này cắt nhau tại điểm thứ 3.
Nối các điểm ta được tam giác cần dựng.
+ Bộ ba 3cm, 4cm, 5cm (4-3 < 5 < 4+3)
Dựng đoạn thẳng bằng 4cm.
Dựng đoạn thẳng bằng 5cm.
Từ hai đầu đoạn thẳng dựng các cung tròn bán kính lần lượt 3cm và 4cm.
Hai cung tròn này cắt nhau tại điểm thứ 3.
Nối các điểm ta được tam giác cần dựng.
+ Bộ ba 2cm, 4cm, 5cm (4-2 < 5 < 4+2)
Dựng đoạn thẳng bằng 4cm.
Dựng đoạn thẳng bằng 5cm.
Từ hai đầu đoạn thẳng dựng các cung tròn bán kính lần lượt 2cm và 4cm.
Hai cung tròn này cắt nhau tại điểm thứ 3.
Nối các điểm ta được tam giác cần dựng.
Vậy ta dựng được tất cả 3 tam giác.
Hình 58
Lời giải:
Gọi O là địa điểm đặt nhà máy (O tùy ý)
A, B, C, D lần lượt là bốn điểm dân cư (A,B, C, D cố định).
Ta luôn có:
OA + OC ≥ AC
OB + OD ≥ BD
⇒ OA + OB + OC + OD ≥ AC + BD (AC + BD là hằng số)
Vậy để OA + OB + OC + OD nhỏ nhất thì OA + OC = AC và OB + OD = BD.
OA + OC = AC khi O thuộc đoạn AC.
OB + OD = BD khi O thuộc đoạn BD.
Vậy OA + OB + OC + OD nhỏ nhất khi O là giao điểm của hai đoạn AC và BD.
Bài 67 trang 87 sgk Toán lớp 7 Tập 2 : Cho tam giác MNP với trung tuyến MR và trọng tâm Q.
a) Tính tỉ số các diện tích của hai tam giác MPQ và RPQ.
b) Tính tỉ số các diện tích của hai tam giác MNQ và RNQ.
c) So sánh các diện tích của hai tam giác RPQ và RNQ.
Từ kết quả trên, hãy chứng minh các tam giác QMN, QNP, QPM có cùng diện tích.
Gợi ý: Hai tam giác ở mỗi câu a, b, c có chung đường cao.
Lời giải:
a) Δ MPQ và Δ RPQ có cùng đường cao.
Q là trọng tâm của ∆MNP ⟹ Q thuộc đường trung tuyến MR và
Gọi độ dài đường vuông góc kẻ từ P đến MR là h. Khi đó:
b) Δ MNQ và Δ RNQ có cùng đường cao.
Chứng minh tương tự câu a ta có:
(k là độ dài đường vuông góc kẻ từ N đến MR)
c) Δ RPQ và Δ RNQ có cùng đường cao.
Gọi m là độ dài đường vuông góc kẻ từ Q đến NP.
Bài 68 trang 88 sgk Toán lớp 7 Tập 2 : Cho góc xOy. Hai điểm A, B lần lượt nằm trên hai cạnh Ox, Oy.
a) Hãy tìm điểm M cách đều hai cạnh góc xOy và cách đều hai điểm A, B.
b) Nếu OA = OB thì có bao nhiêu điểm M thỏa mãn các điều kiện trong câu a?
Lời giải:
a) Tìm M khi độ dài đoạn OA, OB là bất kì
- Vì M cách đều hai cạnh Ox, Oy của góc xOy nên M nằm trên đường phân giác Oz của góc xOy (1).
- Vì M cách đều hai điểm A, B nên M nằm trên đường trung trực của đoạn AB (2).
Từ (1) và (2) ta xác định được điểm M là giao điểm của đường phân giác Oz của góc xOy và đường trung trực của đoạn AB.
b) Tìm M khi OA = OB
Nếu OA = OB thì ∆AOB cân tại O nên tia phân giác góc xOy cũng là trung trực của AB.
Do đó mọi điểm trên tia phân giác góc xOy sẽ cách đều hai cạnh Ox, Oy và cách đều hai điểm A và B.
Vậy khi OA = OB thì có vô số điểm M thỏa mãn các điều kiện ở câu a.
Lời giải:
Gọi A là giao điểm của a và b.
Theo giả thiết c ⟘ a hay SR ⟘ AQ hay SR là đường cao của ΔASQ.
d ⟘ b hay PQ ⟘ AS hay QP là đường cao của ΔASQ.
SR cắt QP tại M ⇒ M là trực tâm của ΔASQ
⇒ AM ⟘ SQ
Vậy đường thẳng đi qua M và vuông góc với SQ cũng đi qua A (đpcm).
a) Ta kí hiệu P A là nửa mặt phẳng bờ d có chứa điểm A (không kể đường thẳng d). Gọi là một điểm của P A và M là giao điểm của đường thẳng NB và d. Hãy so sánh NB với NM + MA; từ đó suy ra NA < NB.
b) Ta kí hiệu P B là nửa mặt phẳng bờ d có chứa điểm B (không kể d). Gọi N' là một điểm của P B . Chứng minh N'B < N'A.
c) Gọi L là một điểm sao cho LA < LB. Hỏi điểm L nằm ở đâu, trong P A , P B hay trên d?
Lời giải:
a) Vì M nằm trên d, d là trung trực của AB nên MA = MB (1)
Vì N ∈ P A nên N và B thuộc hai nửa mặt phẳng khác nhau bờ là đường thẳng d.
⇒ M nằm giữa N và B ⇒ NM + MB = NB (2)
Từ (1) và (2) ⇒ NB = MA + NM.
Trong ∆NMA có : MA + NM > NA (bất đẳng thức tam giác).
⇒ NB > NA.
b) Gọi AN’ cắt d tại K.
K thuộc đường trung trực của AB nên KA = KB.
Trong tam giác N’KB có: N’B < KN’ + KB (bất đẳng thức tam giác).
⇒ N’B < KN’ + KA (vì KA = KB) hay N’B < N’A.
c) Vì LA < LB nên L không thuộc d
Theo chứng minh câu b suy ra L không thuộc P B (vì nếu L thuộc P B thì LA > LB).
Vậy L thuộc P A .
Xem thêm Video Giải bài tập Toán lớp 7 hay và chi tiết khác:
- Luyện tập trang 76-77
- Bài 8: Tính chất ba đường trung trực của tam giác - Luyện tập trang 80)
- Luyện tập trang 80
- Bài 9: Tính chất ba đường cao của tam giác - Luyện tập trang 83)
- Bài tập Ôn cuối năm (Phần Đại số - Phần Hình học)
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Video Giải bài tập Toán lớp 7 hay, chi tiết của chúng tôi được biên soạn bám sát sách giáo khoa Toán 7 Tập 1, Tập 2.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều